The adsorption and decomposition of dimethyl methylphosphonate (DMMP) have been examined on four different metal oxide surfaces: aluminum oxide, magnesium oxide, lanthanum oxide, and iron oxide. Aluminum, magnesium, and lanthanum oxides are observed to behave in much the same way, with initial binding of the PO species to the surface at an acid site, followed by stepwise elimination of the methoxy groups, beginning at temperatures as low as 50 °C, which combine with surface hydrogens to yield methanol that evolves from the surface. The final product observed for these oxides is a surface-bound methylphosphonate, with the P−CH3 bond intact, which is resistant to further oxidation even in the presence of 70 Torr of oxygen at 300−400 °C. Adsorption on iron oxide yields a different sequence of events, with the initial adsorption occurring again with the PO moiety binding to an acid site, although there is some indication of the formation of a second type of surface complex. The primary interaction on iron oxide appears to be much stronger than with the other oxides, and probably involves the unidentate coordination of the DMMP to a Lewis acid site on the surface. Nonselective elimination of both the methoxy and the phosphorus-bound methyl groups begins only after heating above 200 °C, but occurs with total elimination of the methyl and methoxy groups observed after heating above 300 °C in vacuum. The ease with which iron oxide cleaves the P−CH3 bond is attributed to the availability of multiple oxidation states to the iron atom. Participation of the Fe(III)/Fe(II) redox couple in the reaction provides a low-energy path for oxidative cleavage of the P−CH3 bond. The other oxide surfaces cannot provide a similar path, and on these surfaces the P−CH3 bond is resistant to cleavage. The use of infrared diffuse reflectance techniques, observing, in particular, the methyl stretch region of the infrared spectrum, has allowed the almost complete characterization of the decomposition processes which occur after DMMP adsorbs on aluminum oxide, magnesium oxide, lanthanum oxide, and iron oxide.
Improving the processability and physical properties of sustainable biobased polymers using biobased fillers is essential to preserve its biodegradability and make them suitable for different end user applications. Herein, we report the use of spray-dried lignin-coated cellulose nanocrystals (L-CNCs), a biobased filler, to modify the rheological and thermo-mechanical properties of poly(lactic acid) (PLA) composites. The lignin coating on CNCs not only improved the dispersion of CNCs but also enhanced their interfacial interaction with the PLA matrix, resulting in a significant improvement in rheological and thermo-mechanical properties. The rheological percolation threshold concentration obtained by power law analysis for PLA/L-CNC composites was found to be 0.66 wt %, which is significantly lower than the reported values for other PLA/CNC composites. Such a low rheological percolation concentration of L-CNCs can be attributed to excellent dispersion of L-CNCs in the PLA matrix. Addition of only 0.5 wt % L-CNCs to the PLA matrix resulted in an almost 60% improvement in storage modulus, relative to neat PLA, as measured by dynamic mechanical analysis. This improvement in mechanical properties can be attributed to a significant increase in the degree of crystallinity of the PLA. Excellent dispersion and compatibility of L-CNCs with PLA allowed generation of a high density of nucleating sites resulting in an increase in the degree of crystallinity of the PLA matrix. Improvement in the storage modulus at higher loading of L-CNCs can be attributed to both high crystallinity and reinforcement by L-CNCs. We have readily prepared a fully biobased transparent and potentially biodegradable PLA film through film blowing by addition of just 0.3 wt % L-CNCs in the PLA matrix. This present study clearly demonstrates that L-CNCs can serve as excellent fillers for PLA for the development of fully biobased composites.
Nitrogen-doped titanium oxide (TiON) nanoparticle photocatalysts were synthesized by a sol-gel process, for disinfection using E. coli as target bacteria. Our work shows thatthe calcination atmosphere has strong effects on the composition, structure, optical, and antimicrobial properties of TiON nanoparticles. Powders calcinated in a flow of N2 atmosphere (C-TiON) contain free carbon residue and demonstrate different structures and properties compared to the TiON powders calcinated in air. Disinfection experiments on Escherichia coli indicate that C-TiON composite photocatalyst has a much better photocatalytic activity than pure TiON photocatalyst under visible light illumination. The enhanced photocatalytic activity is related to stronger visible light absorption of the carbon-sensitized TiON.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.