A limitation in traditional stepwise population pharmacokinetic model building is the difficulty in handling interactions between model components. To address this issue, a method was previously introduced which couples NONMEM parameter estimation and model fitness evaluation to a single-objective, hybrid genetic algorithm for global optimization of the model structure. In this study, the generalizability of this approach for pharmacokinetic model building is evaluated by comparing (1) correct and spurious covariate relationships in a simulated dataset resulting from automated stepwise covariate modeling, Lasso methods, and single-objective hybrid genetic algorithm approaches to covariate identification and (2) information criteria values, model structures, convergence, and model parameter values resulting from manual stepwise versus single-objective, hybrid genetic algorithm approaches to model building for seven compounds. Both manual stepwise and single-objective, hybrid genetic algorithm approaches to model building were applied, blinded to the results of the other approach, for selection of the compartment structure as well as inclusion and model form of inter-individual and inter-occasion variability, residual error, and covariates from a common set of model options. For the simulated dataset, stepwise covariate modeling identified three of four true covariates and two spurious covariates; Lasso identified two of four true and 0 spurious covariates; and the single-objective, hybrid genetic algorithm identified three of four true covariates and one spurious covariate. For the clinical datasets, the Akaike information criterion was a median of 22.3 points lower (range of 470.5 point decrease to 0.1 point decrease) for the best single-objective hybrid genetic-algorithm candidate model versus the final manual stepwise model: the Akaike information criterion was lower by greater than 10 points for four compounds and differed by less than 10 points for three compounds. The root mean squared error and absolute mean prediction error of the best single-objective hybrid genetic algorithm candidates were a median of 0.2 points higher (range of 38.9 point decrease to 27.3 point increase) and 0.02 points lower (range of 0.98 point decrease to 0.74 point increase), respectively, than that of the final stepwise models. In addition, the best single-objective, hybrid genetic algorithm candidate models had successful convergence and covariance steps for each compound, used the same compartment structure as the manual stepwise approach for 6 of 7 (86 %) compounds, and identified 54 % (7 of 13) of covariates included by the manual stepwise approach and 16 covariate relationships not included by manual stepwise models. The model parameter values between the final manual stepwise and best single-objective, hybrid genetic algorithm models differed by a median of 26.7 % (q1 = 4.9 % and q3 = 57.1 %). Finally, the single-objective, hybrid genetic algorithm approach was able to identify models capable of estimating absorption rate pa...
A methodology is developed that determines age-specific transition rates between cell cycle phases during balanced growth by utilizing age-structured population balance equations. Age-distributed models are the simplest way to account for varied behavior of individual cells. However, this simplicity is offset by difficulties in making observations of age distributions, so age-distributed models are difficult to fit to experimental data. Herein, the proposed methodology is implemented to identify an age-structured model for human leukemia cells (Jurkat) based only on measurements of the total number density after the addition of bromodeoxyuridine partitions the total cell population into two subpopulations. Each of the subpopulations will temporarily undergo a period of unbalanced growth, which provides sufficient information to extract age-dependent transition rates, while the total cell population remains in balanced growth. The stipulation of initial balanced growth permits the derivation of age densities based on only age-dependent transition rates. In fitting the experimental data, a flexible transition rate representation, utilizing a series of cubic spline nodes, finds a bimodal G(0)/G(1) transition age probability distribution best fits the experimental data. This resolution may be unnecessary as convex combinations of more restricted transition rates derived from normalized Gaussian, lognormal, or skewed lognormal transition-age probability distributions corroborate the spline predictions, but require fewer parameters. The fit of data with a single log normal distribution is somewhat inferior suggesting the bimodal result as more likely. Regardless of the choice of basis functions, this methodology can identify age distributions, age-specific transition rates, and transition-age distributions during balanced growth conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.