Temperate zone bats may be more sensitive to climate change than other groups of mammals because many aspects of their ecology are closely linked to temperature. However, few studies have tried to predict the responses of bats to climate change. The Indiana bat (Myotis sodalis) is a federally listed endangered species that is found in the eastern United States. The northerly distribution of Indiana bat summer maternity colonies relative to their winter distributions suggests that warmer climates may result in a shift in their summer distribution. Our objectives were to determine the climatic factors associated with Indiana bat maternity range and forecast changes in the amount and distribution of the range under future climates. We used Maxent to model the suitable climatic habitat of Indiana bats under current conditions and four future climate forecasts for 2021–30, 2031–40, 2041–50, and 2051–60. Average maximum temperature across the maternity season (May–August) was the most important variable in the model of current distribution of Indiana bat maternity colonies with suitability decreasing considerably above 28ºC. The areal extent of the summer maternity distribution of Indiana bats was forecasted to decline and be concentrated in the northeastern United States and Appalachian Mountains; the western part of the current maternity range (Missouri, Iowa, Illinois, Kentucky, Indiana, and Ohio) was forecasted to become climatically unsuitable under most future climates. Our models suggest that high temperatures may be a factor in roost-site selection at the regional scale and in the future, may also be an important variable at the microhabitat scale. When behavioral changes fail to mitigate the effects of high temperature, range shifts are likely to occur. Thus, habitat management for Indiana bat maternity colonies in the northeastern United States and Appalachian Mountains of the Southeast is critical as these areas will most likely serve as climatic refugia.
Understanding animals' behavioral and physiological responses to pathogenic diseases is critical for management and conservation. One such disease, white‐nose syndrome (WNS), has greatly affected bat populations throughout eastern North America leading to significant population declines in several species. Although tricolored bat ( Perimyotis subflavus ) populations have experienced significant declines, little research has been conducted on their responses to the disease, particularly in the southeastern United States. Our objective was to document changes in tricolored bat roost site use after the appearance of WNS in a hibernaculum in the southeastern U.S. and relate these to microsite temperatures, ambient conditions, and population trends. We censused a tricolored bat hibernaculum in northwestern South Carolina, USA, once each year between February 26 and March 2, 2014–2021, and recorded species, section of the tunnel, distance from the entrance, and wall temperature next to each bat. The number of tricolored bats in the hibernaculum dropped by 90.3% during the first 3 years after the arrival of WNS. However, numbers stabilized and slightly increased from 2018 to 2021. Prior to the arrival of WNS, 95.6% of tricolored bats roosted in the back portion of the tunnel that was the warmest. After the arrival of WNS, we observed a significant increase in the proportion of bats using the front, colder portions of the tunnel, particularly during the period of population stabilization and increase. Roost temperatures of bats were also positively associated with February external temperatures. Our results suggest that greater use of the colder sections of the tunnel by tricolored bats could have led to increased survival due to slower growth rates of the fungus that causes WNS in colder temperatures or decreased energetic costs associated with colder hibernation temperatures. Thus, management actions that provide cold hibernacula may be an option for long‐term management of hibernacula, particularly in southern regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.