We have compiled a list of all the inteins (protein splicing elements) whose sequences have been published or were available from on-line sequence databases as of September 18, 1996. Analysis of the 36 available intein sequences refines the previously described intein motifs and reveals the presence of another intein motif, Block H. Furthermore, analysis of the new inteins reshapes our view of the conserved splice junction residues, since three inteins lack the intein penultimate His seen in prior examples. Comparison of intein sequences suggests that, in general, (i) inteins present in the same location within extein homologs from different organisms are very closely related to each other in paired sequence comparison or phylogenetic analysis and we suggest that they should be considered intein alleles; (ii) multiple inteins present in the same gene are no more similar to each other than to inteins present in different genes; (iii) phylogenetic analysis indicates that inteins are so divergent that trees with statistically significant branches cannot be generated except for intein alleles.
Inteins are protein splicing elements that mediate their excision from precursor proteins and the joining of the flanking protein sequences (exteins). In this study, protein splicing was controlled by splitting precursor proteins within the Psp Pol-1 intein and expressing the resultant fragments in separate hosts. Reconstitution of an active intein was achieved by in vitro assembly of precursor fragments. Both splicing and intein endonuclease activity were restored. Complementary fragments from two of the three fragmentation positions tested were able to splice in vitro. Fragments resulting in redundant overlaps of intein sequences or containing affinity tags at the fragmentation sites were able to splice. Fragment pairs resulting in a gap in the intein sequence failed to splice or cleave. However, similar deletions in unfragmented precursors also failed to splice or cleave. Single splice junction cleavage was not observed with single fragments. In vitro splicing of intein fragments under native conditions was achieved using mini exteins. Trans-splicing allows differential modification of defined regions of a protein prior to extein ligation, generating partially labeled proteins for NMR analysis or enabling the study of the effects of any type of protein modification on a limited region of a protein.
SummaryThe transposon Tn5 ble gene and the Escherichia coli alkylation-inducible aidC locus are co-operatively involved in the resistance to the anti-cancer drug and DNA-cleaving agent bleomycin and enhance fitness of bacteria in the absence of the drug. In this report, we demonstrate that the aidC locus is identical to nrfG, the last gene of the nrf operon involved in the periplasmic formate-dependent nitrite reduction. In the presence of Ble, NrfG expression is specifically induced and restores both bleomycin resistance and its associated beneficial growth effect in an aidC ¹ strain. In vitro DNA protection assays reveal that purified Ble prevents bleomycin-mediated DNA breakage, as do bleomycin-binding proteins. Similarities between haems of the cytochrome c biogenesis nrf pathway and iron bleomycin suggest a DNA repair-independent molecular mechanism for both bleomycin resistance and increased viability. The Ble protein binds bleomycin and prevents DNA breakage. It also induces the nrf locus that may assimilate bleomycin into haem for extracellular transport or inactivate bleomycin. Inactivation of potent DNA oxidants confers a better fitness to the bacterium carrying the transposon, suggesting a symbiotic relationship between host and transposon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.