Despite no obvious barrier to gene flow, historical environmental processes and ecological specializations can lead to genetic differentiation in highly mobile animals. Ecotypes emerged in several large mammal species as a result of niche specializations and/or social organization. In the North-West Atlantic, two distinct bottlenose dolphin (Tursiops truncatus) ecotypes (i.e. 'coastal' and 'pelagic') have been identified. Here, we investigated the genetic population structure of North-East Atlantic (NEA) bottlenose dolphins on a large scale through the analysis of 381 biopsy-sampled or stranded animals using 25 microsatellites and a 682-bp portion of the mitochondrial control region. We shed light on the likely origin of stranded animals using a carcass drift prediction model. We showed, for the first time, that coastal and pelagic bottlenose dolphins were highly differentiated in the NEA. Finer-scale population structure was found within the two groups. We suggest that distinct founding events followed by parallel adaptation may have occurred independently from a large Atlantic pelagic population in the two sides of the basin. Divergence could be maintained by philopatry possibly as a result of foraging specializations and social organization. As coastal environments are under increasing anthropogenic pressures, small and isolated populations might be at risk and require appropriate conservation policies to preserve their habitats. While genetics can be a powerful first step to delineate ecotypes in protected and difficult to access taxa, ecotype distinction should be further documented through diet studies and the examination of cranial skull features associated with feeding.
Field surveys have reported a global shift in harbour porpoise distribution in European waters during the last 15 years, including a return to the Atlantic coasts of France. In this study, we analyzed genetic polymorphisms at a fragment of the mitochondrial control region (mtDNA CR) and 7 nuclear microsatellite loci, for 52 animals stranded and by-caught between 2000 and 2010 along the Atlantic coasts of France. The analysis of nuclear and mitochondrial loci provided contrasting results. The mtDNA revealed two genetically distinct groups, one closely related to the Iberian and African harbour porpoises, and the second related to individuals from the more northern waters of Europe. In contrast, nuclear polymorphisms did not display such a distinction. Nuclear markers suggested that harbour porpoises behaved as a randomly mating population along the Atlantic coasts of France. The difference between the two kinds of markers can be explained by differences in their mode of inheritance, the mtDNA being maternally inherited in contrast to nuclear loci that are bi-parentally inherited. Our results provide evidence that a major proportion of the animals we sampled are admixed individuals from the two genetically distinct populations previously identified along the Iberian coasts and in the North East Atlantic. The French Atlantic coasts are clearly the place where these two previously separated populations of harbour porpoises are now admixing. The present shifts in distribution of harbour porpoises along this coast is likely caused by habitat changes that will need to be further studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.