In this work, we present a methodology to identify COVID-19 spreaders using the analysis of the relationship between socio-cultural and economic characteristics with the number of infections and deaths caused by the COVID-19 virus in different countries. For this, we analyze the information of each country using the complex networks approach, specifically by analyzing the spreaders countries based on the separator set in 5-layer multiplex networks. The results show that, we obtain a classification of the countries based on their numerical values in socioeconomics, population, Gross Domestic Product (GDP), health and air connections; where, in the spreader set there are those countries that have high, medium or low values in the different characteristics; however, the aspect that all the countries belonging to the separator set share is a high value in air connections. INDEX TERMS Complex networks, complex systems, COVID-19, multiplex networks, optimization, social networks.
Redistricting is the redrawing of the boundaries of legislative districts for electoral purposes in such a way that the generated districts fulfill federal and state requirements such as contiguity, population equality and compactness. In this paper we solve the problem by means of a single objective and a multiobjective simulated annealing algorithm. These algorithms were applied in two real examples in Mexico. The results show that the performance of the multiobjective approach is better, leading to higher quality zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.