Plastic flow behavior and globularization kinetics during subtransus hot working were determined for Ti-6Al-4V with three different transformed beta microstructures. These conditions consisted of fine lamellar colonies, a mixture of coarse colonies and acicular alpha, and acicular alpha. Isothermal hot compression tests were performed on cylindrical samples at subtransus temperatures and strain rates typical of ingot breakdown (i.e., T ϳ 815 ЊC to 955 ЊC, ϳ 0.1 s Ϫ1 ). For all three material conditions, true stress-true strain curves exhibited a peak stress followed by noticeable flow softening; the values of peak stress and flow softening rate showed little dependence on starting microstructure. On the other hand, the kinetics of dynamic globularization varied noticeably with microstructure. By and large, the globularization rate under a given set of deformation conditions was most rapid for the fine acicular microstructure and least rapid for the mixed coarse-colony/acicular structure. At temperatures close to the beta transus, however, the difference in globularization rates for the three microstructures was less, an effect attributed to the rapid (continuous) coarsening of the laths in the acicular microstructure during preheating prior to hot working. The absence of a correlation between the globularization kinetics and the observed flow softening at low strains suggested platelet/lath bending and kinking as the primary deformation mechanism that controls the shape of the flow curves.
The occurrence of cavity initiation and gross, free-surface fracture during subtransus hot pancake forging of Ti-6Al-4V with a transformed beta (colony) microstructure was established. Cavity initiation mechanisms were one of two distinct types. At temperatures approximately 75 ЊC or more below the beta transus temperature (T  ), cavity initiation occurred at relatively low strains in the beta phase lying between the grain-boundary alpha phase and the lamellar colonies. By contrast, at temperatures near the transus (i.e., T Ϸ T  Ϫ25 ЊC), cavity initiation occurred at much larger strains as a result of microfracture of partially-to-fully globularized alpha phase. Finite element method (FEM) modeling of the pancake forging process revealed that secondary tensile stresses had been developed in the regions that had exhibited cavitation/fracture. The FEM analyses were used to correlate both the cavity initiation and the gross free-surface fracture results to previous observations from uniaxial hot tension tests in which identical damage mechanisms had been observed. The tensile work criterion of Cockcroft and Latham (C ϩ L) gave moderately good (quantitative) correlation between the forging and uniaxial tension behaviors. An alternate comparison based on the Rice and Tracey cavity growth model gave reasonable predictions of free-surface fracture but tended to overestimate the incidence of subsurface cavity initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.