Abstract.Many number-theoretic algorithms rely on a result of Ankeny, which states that if the Extended Riemann Hypothesis (ERH) is true, any nontrivial multiplicative subgroup of the integers modulo m omits a number that is 0(log m). This has been generalized by Lagañas. Montgomery, and Odlyzko to give a similar bound for the least prime ideal that does not split completely in an abelian extension of number fields. This paper gives a different proof of this theorem, in which explicit constants are supplied. The bounds imply that if the ERH holds, a composite number m has a witness for its compositeness (in the sense of Miller or Solovay-Strassen) that is at most 2 log m .
In this paper we analyze the behavior of quantum random walks. In particular, we present several new results for the absorption probabilities in systems with both one and two absorbing walls for the onedimensional case. We compute these probabilities both by employing generating functions and by use of an eigenfunction approach. The generating function method is used to determine some simple properties of the walks we consider, but appears to have limitations. The eigenfunction approach works by relating the problem of absorption to a unitary problem that has identical dynamics inside a certain domain, and can be used to compute several additional interesting properties, such as the time dependence of absorption. The eigenfunction method has the distinct advantage that it can be extended to arbitrary dimensionality. We outline the solution of the absorption probability problem of a ðD À 1Þ-dimensional wall in a D-dimensional space. r 2004 Elsevier Inc. All rights reserved.MSC: 03.67.Lx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.