Purpose To develop Natural Language Processing (NLP) approaches to supplement manual outcome validation, specifically to validate pneumonia cases from chest radiograph reports. Methods We trained one NLP system, ONYX, using radiograph reports from children and adults that were previously manually reviewed. We then assessed its validity on a test set of 5,000 reports. We aimed to substantially decrease manual review, not replace it entirely, and so we classified reports as 1) consistent or 2) not consistent with pneumonia or 3) requiring manual review due to complex features. We developed processes tailored either to optimize accuracy or to minimize manual review. Using logistic regression, we jointly modeled sensitivity and specificity of ONYX in relation to patient age, comorbidity, and care setting. We estimated positive and negative predictive value (PPV and NPV) assuming pneumonia prevalence in the source data. Results Tailored for accuracy, ONYX identified 25% of reports as requiring manual review (34% of true pneumonias and 18% of non-pneumonias). For the remainder, ONYX’s sensitivity was 92% (95% confidence interval [CI] 90–93%), specificity 87% (86–88%), PPV 74% (72– 76%), and NPV 96% (96–97%). Tailored to minimize manual review, ONYX classified 12% as needing manual review and for the remainder had sensitivity 75% (72-77%), specificity 95% (94-96%), PPV 86% (83-88%), and NPV 91% (90-91%). Conclusions For pneumonia validation, ONYX can replace almost 90% of manual review while maintaining low to moderate misclassification rates. It can be tailored for different outcomes and study needs and thus warrants exploration in other settings.
The most common side effect of angiotensin converting enzyme inhibitor drugs (ACEi) is a cough. We conducted a genome wide association study (GWAS) of ACEi-induced cough among 7,080 subjects of diverse ancestries in the eMERGE network. Cases were subjects diagnosed with ACEi-induced cough. Controls were subjects with at least 6 months of ACEi use and no cough. A GWAS (1,595 cases and 5,485 controls) identified associations on chromosome 4 in an intron of KCNIP4. The strongest association was at rs145489027 (MAF=0.33, OR=1.3 [95%CI: 1.2–1.4], p=1.0×10−8). Replication for six SNPs in KCNIP4 was tested in a second eMERGE population (n=926) and in the GoDARTS cohort (n=4,309). Replication was observed at rs7675300 (OR=1.32 [1.01–1.70], p=0.04) in eMERGE and rs16870989 and rs1495509 (OR=1.15 [1.01–1.30], p=0.03 for both) in GoDARTS. The combined association at rs1495509 was significant (OR=1.23 [1.15–1.32], p=1.9×10−9). These results indicate that SNPs in KCNIP4 may modulate ACEi-induced cough risk.
Herpes zoster, commonly referred to as shingles, is caused by the varicella zoster virus (VZV). VZV initially manifests as chicken pox, most commonly in childhood, can remain asymptomatically latent in nerve tissues for many years and often re-emerges as shingles. Although reactivation may be related to immune suppression, aging and female sex, most inter-individual variability in re-emergence risk has not been explained to date. We performed a genome-wide association analyses in 22 981 participants (2280 shingles cases) from the electronic Medical Records and Genomics Network. Using Cox survival and logistic regression, we identified a genomic region in the combined and European ancestry groups that has an age of onset effect reaching genome-wide significance (P>1.0 × 10−8). This region tags the non-coding gene HCP5 (HLA Complex P5) in the major histocompatibility complex. This gene is an endogenous retrovirus and likely influences viral activity through regulatory functions. Variants in this genetic region are known to be associated with delay in development of AIDS in people infected by HIV. Our study provides further suggestion that this region may have a critical role in viral suppression and could potentially harbor a clinically actionable variant for the shingles vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.