Ipomoeassin F, a macrolide glycoresin containing an embedded disaccharide, possesses potent in vitro antitumor activity with an unknown mechanism of function. It inhibits tumor cell growth with single-digit nanomolar IC50 values, superior to many clinical chemotherapeutic drugs. To facilitate translation of its bioactivity into protein function for drug development, we report here a new synthesis for the gram-scale production of ipomoeassin F (3.8% over 17 linear steps) from commercially-available starting materials. The conformation-controlled subtle reactivity differences of the hydroxyl groups in carbohydrates were utilized to quickly construct the disaccharide core, which, along with judicial selection of protecting groups, made the current synthesis very efficient. The same strategy was also applied to the smooth preparation of the 11R-epimer of ipomoeassin F for the first time. Cytotoxicity assays demonstrated the crucial role of the natural 11S configuration. In addition, cell cycle analyses and apoptosis assays on ipomoeassin F and/or its epimer were conducted. This work has laid a solid ground for understanding the medicinal potential of the ipomoeassin family of glycolipids in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.