Poxviruses and gamma-2 herpesviruses share the K3 family of viral immune evasion proteins that inhibit the surface expression of glycoproteins such as major histocompatibility complex class I (MHC-I), B7.2, ICAM-1, and CD95(Fas). K3 family proteins contain an amino-terminal PHD/LAP or RING-CH domain followed by two transmembrane domains. To examine whether human homologues are functionally related to the viral immunoevasins, we studied seven membrane-associated RING-CH (MARCH) proteins. All MARCH proteins located to subcellular membranes, and several MARCH proteins reduced surface levels of known substrates of the viral K3 family. Two closely related proteins, MARCH-IV and MARCH-IX, reduced surface expression of MHC-I molecules. In the presence of MARCH-IV or MARCH-IX, MHC-I was ubiquitinated and rapidly internalized by endocytosis, whereas MHC-I molecules lacking lysines in their cytoplasmic tail were resistant to downregulation. The amino-terminal regions containing the RING-CH domain of several MARCH proteins examined catalyzed multiubiquitin formation in vitro, suggesting that MARCH proteins are ubiquitin ligases. The functional similarity of the MARCH family and the K3 family suggests that the viral immune evasion proteins were derived from MARCH proteins, a novel family of transmembrane ubiquitin ligases that seems to target glycoproteins for lysosomal destruction via ubiquitination of the cytoplasmic tail.
Immunomodulators of pathogens frequently affect multiple cellular targets, thus preventing recognition by different immune cells. For instance, the K5 modulator of immune recognition (MIR2) from Kaposi sarcoma-associated herpesvirus prevents activation of cytotoxic T cells, natural killer cells, and natural killer T cells by downregulating major histocompatibility complex (MHC) class I molecules, the MHC-like molecule CD1, the cell adhesion molecules ICAM-1 and PECAM, and the co-stimulatory molecule B7.2. K5 belongs to a family of viral-and cellular-membranespanning RING ubiquitin ligases. While a limited number of transmembrane proteins have been shown to be targeted for degradation by this family, it is unknown whether additional targets exist. We now describe a quantitative proteomics approach to identify novel targets of this protein family. Using stable isotope labeling by amino acids, we compared the proteome of plasma, Golgi, and endoplasmic reticulum membranes in the presence and absence of K5. Mass spectrometric protein identification revealed four proteins that were consistently underrepresented in the plasma membrane of K5 expression cells: MHC I (as expected), bone marrow stromal antigen 2 (BST-2, CD316), activated leukocyte cell adhesion molecule (ALCAM, CD166) and Syntaxin-4. Downregulation of each of these proteins was independently confirmed by immunoblotting with specific antibodies. We further demonstrate that ALCAM is a bona fide target of both K5 and the myxomavirus homolog M153R. Upon exiting the endoplasmic reticulum, ALCAM is ubiquitinated in the presence of wild-type, but not RING-deficient or acidic motif-deficient, K5, and is targeted for lysosomal degradation via the multivesicular body pathway. Since ALCAM is the ligand for CD6, a member of the immunological synapse of T cells, its removal by viral immune modulators implies a role for CD6 in the recognition of pathogens by T cells. The unbiased global proteome analysis therefore revealed novel immunomodulatory functions of pathogen proteins.
IL-10 is a potent anti-inflammatory cytokine interfering with antigen presentation by inducing the intracellular sequestration of MHC class II (MHC-II) molecules. Here we studied the contribution of membrane-associated RING-CH (MARCH) ubiquitin ligase family members to the IL-10-induced down-regulation of MHC-II molecules. We found that MARCH1 and MARCH8 proteins are the most potent family members for the downregulation of MHC-II surface expression in transfected cells, but only MARCH1 mRNA expression is strongly induced by IL-10 in human primary monocytes. We detected monoand poly-ubiquitinated forms of MHC-II molecules both in IL-10-treated monocytes and in cells transfected with MARCH1. We also show direct interaction between MHC-II and MARCH1 molecules in co-immunoprecipitation assays. Finally, we found that siRNAmediated knockdown of MARCH1 reverses IL-10-induced MHC-II down-regulation in primary monocytes. Thus, the immunosuppressive effect of IL-10 on antigen presentation is mediated through induced expression of MARCH1.
In the present study, the human TEB4 is identified as a novel ER (endoplasmic reticulum)-resident ubiquitin ligase. TEB4 has homologues in many species and has a number of remarkable properties. TEB4 contains a conserved RING (really interesting new gene) finger and 13 predicted transmembrane domains. The RING finger of TEB4 and its homologues is situated at the N-terminus and has the unconventional C4HC3 configuration. The N-terminus of TEB4 is located in the cytosol. We show that the isolated TEB4 RING domain catalyses ubiquitin ligation in vitro in a reaction that is ubiquitin Lys48-specific and involves UBC7 (ubiquitin-conjugating enzyme 7). These properties are reminiscent of E3 enzymes, which are involved in ER-associated protein degradation. TEB4 is an ER degradation substrate itself, promoting its own degradation in a RING finger- and proteasome-dependent manner
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.