Periodic outbreaks of spruce budworm (SBW) affect large areas of ecologically and economically important conifer forests in North America, causing tree mortality and reduced forest productivity. Host resistance against SBW has been linked to growth phenology and the chemical composition of foliage, but the underlying molecular mechanisms and population variation are largely unknown. Using a genomics approach, we discovered a β-glucosidase gene, Pgβglu-1, whose expression levels and function underpin natural resistance to SBW in mature white spruce (Picea glauca) trees. In phenotypically resistant trees, Pgβglu-1 transcripts were up to 1000 times more abundant than in non-resistant trees and were highly enriched in foliage. The encoded PgβGLU-1 enzyme catalysed the cleavage of acetophenone sugar conjugates to release the aglycons piceol and pungenol. These aglycons were previously shown to be active against SBW. Levels of Pgβglu-1 transcripts and biologically active acetophenone aglycons were substantially different between resistant and non-resistant trees over time, were positively correlated with each other and were highly variable in a natural white spruce population. These results suggest that expression of Pgβglu-1 and accumulation of acetophenone aglycons is a constitutive defence mechanism in white spruce. The progeny of resistant trees had higher Pgβglu-1 gene expression than non-resistant progeny, indicating that the trait is heritable. With reported increases in the intensity of SBW outbreaks, influenced by climate, variation of Pgβglu-1 transcript expression, PgβGLU-1 enzyme activity and acetophenone accumulation may serve as resistance markers to better predict impacts of SBW in both managed and wild spruce populations.
Laboratory rearing of spruce budworm, Choristoneura fumiferana, in conjunction with field rearing, gravimetric analyses, a transfer experiment, and foliage chemical analyses at six dates during the period of budworm feeding activity indicated that the age of balsam fir, Abies balsamea, trees (70-year-old mature trees or 30-year-old juvenile trees) affected tree suitability for the spruce budworm via the chemical profile of the foliage. Insects reared on old trees had greater survival and pupal weight, shorter development times, and caused more defoliation than those reared on young trees. Young trees were more suitable for the development of young larvae (instars 2-5), while old trees were more suitable for the development of older, sixth-instar larvae. These results were confirmed by the laboratory transfer experiment. Young larvae fed foliage from young trees had higher relative growth rates (RGR), digestibility (AD), and efficiency of conversion of ingested foliage (ECI) than those fed foliage from old trees. These differences appeared to be related to the high N:tannins ratio, and the high contents of P present in young trees during the development of the young larvae. Old larvae fed foliage from old trees had higher relative growth rates, relative consumption rates (RCR), and digestibility of the foliage than those fed foliage from young trees. The high digestibility of the foliage of old trees was compensated for by a lower efficiency of conversion of digested food (ECD), which in turn resulted in no significant effect of tree age on the efficiency of conversion of ingested foliage by old larvae. The low relative consumption rate of old larvae fed foliage from young trees appeared to be related to the low N:tannins ratio, and the high contents of bornyl acetate, terpinolene, and °-3-carene present in young trees during the budworm sixth instar. Variations in these compounds in relation to tree age may serve as mechanisms of balsam fir resistance to spruce budworm by reducing the feeding rate of sixth instar larvae.
Variation in insect herbivory can lead to population structure in plant hosts as indicated by defence traits. In annual herbaceous, defence traits may vary between geographic areas but evidence of such patterns is lacking for long-lived species. This may result from the variety of selection pressures from herbivores, long distance gene flow, genome properties, and lack of research. We investigated the antagonistic interaction between white spruce (Picea glauca) and spruce budworm (SBW, Choristoneura fumiferana) the most devastating forest insect of eastern North America in common garden experiments. White spruces that are able to resist SBW attack were reported to accumulate the acetophenones piceol and pungenol constitutively in their foliage. We show that levels of these acetophenones and transcripts of the gene responsible for their release is highly heritable and that their accumulation is synchronized with the most devastating stage of SBW. Piceol and pungenol concentrations negatively correlate with rate of development in female SBW and follow a non-random geographic variation pattern that is partially explained by historical damage from SBW and temperature. Our results show that accumulation of acetophenones is an efficient resistance mechanism against SBW in white spruce and that insects can affect population structure of a long-lived plant.
Phenolic compounds are apparently important in the defence mechanisms of conifers. To test the hypothesis that phenolic compounds in resistant white spruce [Picea glauca (Moench) Voss (Pinaceae)] impart resistance against spruce budworm [Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae)], we performed aqueous extractions of current-year shoots of white spruce that were tolerant of varying levels of budworm defoliation. High-performance liquid chromatographic profiles of water extracts of P. glauca needles differed between resistant and susceptible trees. Further nuclear magnetic resonance analyses identified two phenolic glucosides in susceptible white spruce, picein [3-(b-D-glucosyloxy)-hydroxy-acetophenone] and pungenin [3-(b-D-glucosyloxy)-4-hydroxy-acetophenone], and two phenolics in resistant white spruce, pungenol (3¢,4¢-hydroxy-acetophenone) and piceol (4¢-hydroxyacetophenone). We focused on the performance of spruce budworm when piceol and pungenol were added to the diet. These two compounds significantly reduced larval survival, retarded development, and reduced pupal mass. Food consumption by sixth-instar spruce budworms was affected by a combination of the phenolic compounds. These results suggest that the two phenolic compounds reduce the pressure of spruce budworm herbivory on specific host tree phenotypes. Thus, the mechanism of defence in P. glauca apparently reflects a strategy of constitutive resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.