Summary
Genome-scale studies have revealed extensive, cell type-specific co-localization of transcription factors, but the mechanisms underlying this phenomenon remain poorly understood. Here we demonstrate in macrophages and B cells that collaborative interactions of the common factor PU.1 with small sets of macrophage- or B celllineage-determining transcription factors establish cell-specific binding sites that are associated with the majority of promoter-distal H3K4me1-marked genomic regions. PU.1 binding initiates nucleosome remodeling followed by H3K4 monomethylation at large numbers of genomic regions associated with both broadly and specifically expressed genes. These locations serve as beacons for additional factors, exemplified by liver X receptors, which drive both cell-specific gene expression and signal-dependent responses. Together with analyses of transcription factor binding and H3K4me1 patterns in other cell types, these studies suggest that simple combinations of lineage-determining transcription factors can specify the genomic sites ultimately responsible for both cell identity and cell type-specific responses to diverse signaling inputs.
Nuclear compartmentalization seems to have an important role in regulating metazoan genes. Although studies on immunoglobulin and other loci have shown a correlation between positioning at the nuclear lamina and gene repression, the functional consequences of this compartmentalization remain untested. We devised an approach for inducible tethering of genes to the inner nuclear membrane (INM), and tested the consequences of such repositioning on gene activity in mouse fibroblasts. Here, using three-dimensional DNA-immunoFISH, we demonstrate repositioning of chromosomal regions to the nuclear lamina that is dependent on breakdown and reformation of the nuclear envelope during mitosis. Moreover, tethering leads to the accumulation of lamin and INM proteins, but not to association with pericentromeric heterochromatin or nuclear pore complexes. Recruitment of genes to the INM can result in their transcriptional repression. Finally, we use targeted adenine methylation (DamID) to show that, as is the case for our model system, inactive immunoglobulin loci at the nuclear periphery are contacted by INM and lamina proteins. We propose that these molecular interactions may be used to compartmentalize and to limit the accessibility of immunoglobulin loci to transcription and recombination factors.
We describe here a novel homeobox gene, denoted TGIF (5TG3 interacting factor), which belongs to an expanding TALE (three amino acid loop extension) superclass of atypical homeodomains. The TGIF homeodomain binds to a previously characterized retinoid X receptor (RXR) responsive element from the cellular retinol-binding protein II promoter (CRBPII-RXRE), which contains an unusual DNA target for a homeobox. The interactions of both the homeoprotein TGIF and receptor RXR␣ with the CRBPII-RXRE DNA motif occur on overlapping areas and generate a mutually exclusive binding in vitro. Transient cellular transfections demonstrate that TGIF inhibits the 9-cis-retinoic acid-dependent RXR␣ transcription activation of the retinoic acid responsive element. TGIF transcripts were detected in a restricted number of tissues. The canonical binding site of TGIF is conserved and is an integral part of several responsive elements which are organized like the CRBPII-RXRE. Hence, a novel auxiliary factor to the steroid receptor superfamily may participate in the transmission of nuclear signals during development and in the adult, as illustrated by the down-modulation of the RXR␣ activities.
The molecular crosstalk between the interkeukin-7 receptor (IL-7R) and pre-BCR in B lymphopoiesis has been enigmatic. We demonstrate that in pre-B cells, the IL-7R, but not the pre-BCR, was coupled to the phosphatidylinositol-3-OH kinase (PI(3)K)–Akt module, signaling by which prevents Rag expression. Attenuation of IL-7 signaling resulted in up-regulation of Foxo1 and Pax5, which co-activated many pre-B cell genes, including Rag1,2 and Blnk. Induction of the latter gene enabled pre-BCR signaling via the Syk-BLNK module and promoted immunoglobulin light chain rearrangement. BLNK signaling also antagonized Akt activation, thereby augmenting Foxo1 and Pax5 accumulation. This self-reinforcing molecular circuit appears to sense limiting concentrations of IL-7 and functions to control the expansion and differentiation of pre-B cells.
Alternative lineage restriction and B cell fate commitment require the transcription factor Pax5, but the function of early B cell factor (EBF) in these processes remains mostly unexplored. Here we show that in the absence of EBF, 'expandable' and clonal lymphoid progenitor cells retained considerable myeloid potential. Conversely, ectopic expression of EBF in multipotential progenitor cells directed B cell generation at the expense of myeloid cell fates. EBF induced Pax5 and antagonized expression of genes encoding the transcription factors C/EBPalpha, PU.1 and Id2. Notably, sustained expression of EBF in Pax5-/- hematopoietic progenitor cells was sufficient to block their myeloid and T lineage potential in vivo. Furthermore, in Pax5-/- pro-B cells, higher EBF expression repressed alternative lineage genes. Thus, EBF can restrict alternative lineage 'choice' and promote commitment to the B cell fate independently of Pax5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.