We investigated the impact of a single prescribed fire on soil properties of a pine rockland (PR) ecosystem (South Florida, USA) that had never been burned since establishment in 1978. Soil samples were collected before the prescribed fire (T0) and 1 wk (T1), 4 wk (T4), and 10 wk (T10) postburn and analyzed for chemical characteristics (pH, C, N, P, organic matter) and culturable bacterial and fungal cells. Soil organic matter showed a significant decrease after the burn as a result of fuel combustion. However, a significant increase in soil fungal and bacterial communities in postburn samples was observed, possibly resulting from higher P, N, and micronutrient availability in the soil after burning. Our study indicates that culturable soil microbes can respond to even small and undetectable soil chemical changes. This case study suggests that fast‐growing soil microbes respond more rapidly than chemical properties to a prescribed burn and may have an impact on recovering of native vegetation communities.
Background Preserving fire-dependent ecosystems can mitigate biodiversity loss from urbanization, but prescribing fire is challenging near human habitation. Consequently, dereliction of fire-dependent forests is widespread in urban fragments. Natural disturbance-based management, like prescribing fire, is gaining global acceptance, yet it is unclear what affects prolonged exclusion have on the initial regeneration of isolated plant communities immediately after fire is reintroduced. We took advantage of the first prescribed low-intensity burn on a university pine rockland nature preserve in South Florida, USA, to gain insight. We measured the changes in plant community composition and vegetation cover 1 week before the prescribed burn, and again 1, 2, and 14 weeks after to assess the early and short-term stages of recovery. Results The fire consumed substantial leaf litter, surface fuels, and canopy leaves, increasing sunlight availability to the understory and exposing bare ground. Many woody plants perished within a week post-burn, particularly invasive shrubs; however, germinating and resprouting plant growth were rapid. By 14 weeks, vegetation covered more of the ground than before the burn, although the upper canopy remained relatively open. Rarefied species richness was recovered by 14 weeks but did not exceed pre-burn levels. Invasive species richness was also maintained post-burn. Despite no overall changes in the community structure, our correspondence analysis and analysis of similarity of the plant community suggest high species turnover from the pre-burn to the final community surveyed, with an intermediate turnover in between. Conclusion The endangered pine rockland ecosystem, like many fire-dependent ecosystems, is threatened by habitat loss and fire suppression. Managing urban preserves with periodic burns is essential for supporting habitat for endemic species while decreasing demands for manual and time-intensive maintenance. Our study demonstrates that seedling recruitment from early plantings of native species can contribute significantly and immediately to restoration efforts in a fire-excluded urban preserve; however, many changes were ephemeral. Supplemental burns are likely necessary to further reduce vegetation density and sustain changes to the community composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.