These results indicate a role for this laser in the treatment of onychomycosis, regardless of degree of severity. Ease of delivery and the lack of a need to monitor blood chemistry are attractive attributes.
We examined a laser system (870 and 930 nm), employing wavelengths that have exhibited cellular photodamage properties in optical traps. In vitro, with 1.5 cm diameter flat-top projections (power density of 5.66 W cm(-2)), at physiologic temperatures, we achieved photoinactivation of Staphylococcus aureus, Escherichia coli, Candida albicans and Trichophyton rubrum. Using nonlethal dosimetry, we measured a decrease in trans-membrane potentials (DeltaPsimt and DeltaPsip) and an increase in reactive oxygen species (ROS) generation in methicillin-resistant S. aureus (MRSA), C. albicans and human embryonic kidney cells. We postulate that these multiplexed wavelengths cause an optically mediated mechano-transduction of cellular redox pathways, decreasing DeltaPsi and increasing ROS. The cellular energetics of prokaryotic and fungal pathogens, along with mammalian cells, are affected in a similar manner when treated with these multiplexed wavelengths at the power densities employed. Following live porcine thermal tolerance skin experiments, we then performed human pilot studies, examining photodamage to MRSA in the nose and fungi in onychomycosis. No observable damage to the nares or the nail matrix was observed, yet photodamage to the pathogens was achieved at physiologic temperatures. The selective aspect of this near-infrared photodamage presents the possibility for its future utilization in human cutaneous antimicrobial therapy.
Recently, there has been a resurgence of interest in potential phototherapy technologies for the local treatment of bacterial and fungal infection. Currently, onychomycosis is the principle disease that is the target of these phototherapies in podiatric medicine. Some of these technologies are currently undergoing in vitro and in vivo trials approved by institutional review boards. The three light-based technologies are ultraviolet light therapy, near infrared photo-inactivation therapy, and photothermal ablative antisepsis. Each of these technologies have markedly dissimilar mechanisms of action. In this review, each technology will be discussed from the perspectives of history, photobiology, individual mechanism of action, safety, and potential clinical efficacy, with data presented from published material. This review is intended to give podiatric physicians detailed information on state-of-the-art infectious disease phototherapy.
Nasal colonization with pathogenic bacteria continues to present challenges for patients undergoing surgical procedures, and for the physicians that treat them. Even as molecular medicine produces ever faster and improved data sets for clinicians, it would benefit all medical personnel attempting to decolonize the nose to better understand the historical nasal decolonization data with specific reference to the ecological niche for these bacteria, as it has been recorded for more than a century. Much of the historical data points to the largest ecological niche for nasal Staphylococcus aureus as the vibrissae of the vestibulum nasi. A careful study shows that any topical antimicrobial preparation needs to successfully penetrate the deepest recesses of these specialized nasal hair follicles, if decolonization is to be adequately accomplished. This review highlights the most relevant data of the last 140 years concerning the staphylococcal ecological niche of the vibrissae. Also to be discussed will be a historical review of topical Mupirocin. Almost thirty years after its FDA approval, Mupirocin is still the most widely used topical antibiotic for decolonization therapy around the word. Correspondingly, new experimental in vitro data will be presented showing the differing efficacy of Mupirocin against multiple strains of HA-MRSA and CA-MRSA, based solely on the commercial topical formulation (non Mupirocin ingredients) that acts synergistically with the Mupirocin. Finally, the review will discuss why an understanding of these historical data is a vital component to integrate into any new or augmented nasal decolonization therapy.
We have previously shown that 870 nm/930 nm wavelengths cause photodamage at physiologic temperatures in methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli via generation of endogenous radical oxygen species (ROS) and decreased plasma membrane potentials (Delta Psi p). We tested MRSA (Strain HSJ216) in vitro with sublethal 870 nm/930 nm laser energy and subinhibitory concentrations of erythromycin, tetracycline, penicillin, rifampin and trimethoprim to surmise whether photodamage could potentiate these antimicrobials. We also tested patient isolates of fluoroquinolone-resistant MRSA and E. coli with subinhibitory concentrations of ciprofloxacin. In MRSA (Strain HSJ216) we observed 97% potentiation (a 1.5 log(10) CFU decrease) with erythromycin and tetracycline. In patient isolates of E. coli, we observed 100% potentiation (>3 log(10) CFU decrease) in all irradiated samples with ciprofloxacin. To assess whether staphyloxanthin pigment conferred protection against the generated ROS, we created an isogenic carotenoid-deficient mutant of S. aureus that was significantly less tolerant of 870 nm/930 nm exposure than the wild type strain (P < 0.0001). We suggest that antibiotic potentiation results from a photobiological attenuation of ATP-dependent macromolecular synthetic pathways, similar to that observed with daptomycin, via disruption of Delta Psi p and endogenous generation of ROS. With erythromycin, tetracycline and ciprofloxacin, attenuation of energy-dependent efflux systems is also a possibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.