With PU probes the sound pressure and acoustic particle velocity can be measured directly. Over recent years, the in situ surface impedance method, making use of such a probe, has proven to be an alternative to Kundt's tube measurements for product development type of work. The in situ method can also be used for the purpose of quality control on the acoustic material, be it during manufacturing or assembly, ensuring the best possible way to monitor the practical effectiveness of the acoustic package designed earlier on. In order to assess the variance of the acoustic package material leaving the assembly line, a relevant number of samples were taken over time. The quality of both the headliners, and the passenger seats were measured, of 25 cars of the same type. The robustness of the measurement method will be discussed, and the results will be presented.
The pressure-particle velocity (PU) impedance measurement technique is an experimental method used to measure the surface impedance and the absorption coefficient of acoustic samples in situ or under free-field conditions. In this paper, the measurement uncertainty of the the absorption coefficient determined using the PU technique is explored applying the Monte Carlo method. It is shown that because of the uncertainty, it is particularly difficult to measure samples with low absorption and that difficulties associated with the localization of the acoustic centers of the sound source and the PU sensor affect the quality of the measurement roughly to the same extent as the errors in the transfer function between pressure and particle velocity do.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.