We address the problem of online path planning for optimal sensing with a mobile robot. The objective of the robot is to learn the most about its pose and the environment given time constraints. We use a POMDP with a utility function that depends on the belief state to model the finite horizon planning problem. We replan as the robot progresses throughout the environment. The POMDP is high-dimensional, continuous, non-differentiable, nonlinear, non-Gaussian and must be solved in real-time. Most existing techniques for stochastic planning and reinforcement learning are therefore inapplicable. To solve this extremely complex problem, we propose a Bayesian optimization method that dynamically trades off exploration (minimizing uncertainty in unknown parts of the policy space) and exploitation (capitalizing on the current best solution). We demonstrate our approach with a visually-guide mobile robot. The solution proposed here is also applicable to other closely-R. Martinez-Cantin ( )
Thanks to large-scale image repositories, vast amounts of data for object recognition are now easily available. However, acquiring training labels for arbitrary objects still requires tedious and expensive human effort. This is particularly true for localization, where humans must not only provide labels, but also training windows in an image. We present an approach for reducing the number of labelled training instances required to train an object classifier and for assisting the user in specifying optimal object location windows. As part of this process, the algorithm performs localization to find bounding windows for training examples that are best aligned with the current classification function, which optimizes learning and reduces human effort. To test this approach, we introduce an active learning extension to a latent SVM learning algorithm. Our user interface for training object detectors employs real-time interaction with a human user. Our active learning system provides a mean performance improvement of 4.5% in the average precision over a state of the art detector on the PASCAL Visual Object Classes Challenge 2007 with an average of just 40 minutes of human labelling effort per class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.