Abstract:The present work deals with the 3D printing of porous barium titanate ceramics. Barium titanate is a biocompatible material with piezoelectric properties. Due to insufficient flowability of the starting material for 3D printing, the barium titanate raw material has been modified in three different ways. Firstly, barium titanate powder has been calcined. Secondly, flow additives have been added to the powder. And thirdly, flow additives have been added to the calcined powder. Finally, a polymer has been added to the three materials and specimens have been printed from these three material mixtures. The 3D printed parts were then sintered at 1320°C. The sintering leads to shrinkage which differs between 29.51-71.53% for the tested material mixtures. The porosity of the parts is beneficial for cell growth which is relevant for future medical applications. The results reported in this study demonstrate the possibility to fabricate porous piezoelectric barium titanate parts with a 3D printer that can be used for medical applications. 3D printed porous barium titanate ceramics can especially be used as scaffold for bone tissue engineering, where the bone formation can be promoted by electrical stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.