Medication adherence monitoring has relied largely on indirect measures of pill ingestion including patient selfreport, pharmacy refills, electronically triggered pill bottles, and pill counts. Our objective is to describe an ingestible biosensor system comprising a radio-frequency identification (RFID)-tagged gelatin capsule. Once the capsule dissolves in the stomach, the RFID tag activates to transmit a unique signal to a relay device which transmits a time-stamped message to a cloud-based server that functions as a direct measure of medication adherence. We describe a constellation of mobile technologies that provide real-time direct measures of medication adherence. Optimizing connectivity, relay design, and interactivity with users are important in obtaining maximal acceptability. Potential concerns including gut retention of metallic components of the ingestible biosensor and drug dissolution within a gelatin capsule should be considered. An ingestible biosensor incorporated into a medication management system has the potential to improve medication compliance with realtime monitoring of ingestion and prompt early behavioral intervention. Integration of ingestible biosensors for multiple disease states may provide toxicologists with salient data early in the care of poisoned patients in the future. Further research on device design and interventions to improve adherence is needed and will shape the evolving world of medication adherence.
Background: Digital pill systems comprise an ingestible sensor integrated into a gelatin capsule that overencapsulates medication allowing real-time measures of medication ingestion. These systems may improve the manner in which medication adherence can be assessed and supported. Objective: In this investigation, we tested the durability of the ingestible sensor as part of a clinical trial to measure the feasibility and acceptability of the system to measure adherence to once daily tenofovir disoproxil fumarate/emtricitabine (NCT03842436). Methods: Digital pills not dispensed during the study were stored in a pharmacy. Seventeen sensors were selected from digital pills stored for at least 12 months and activated in a simulated gastric environment. A radiofrequency spectrum analyzer and the reader device used in the clinical trial to capture ingestion events were used to measure activation of emitters. A passing evaluation was defined as an energized emitter within 30 minutes of immersion, ability to broadcast a signal for 10 minutes, and successful acquisition by the reader. Results: All ingestible sensors passed the stability test. Mean activation time in simulated gastric fluid was 3.33 minutes (SD = 1.47); emitters remained active for a mean of 47.72 minutes (SD = 1.78). These parameters matched guidelines defined in the ID-Cap system requirements for use in patients. Conclusions: Ingestible sensor components of the ID-Cap system were therefore stable after long-term storage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.