Modern research has provided new insights into the biological mechanisms of noise-induced hearing loss, and with these new insights comes hope for possible prevention or treatment. Underlying the classic set of cochlear pathologies that occur as a result of noise exposure are increased levels of reactive oxygen species (ROS) that play a significant role in noise-induced hair cell death. Both necrotic and apoptotic cell death have been identified in the cochlea. Included in the current review is a brief review of ROS, along with a description of sources of cochlear ROS generation and how ROS can damage cochlear tissue. The pathways of necrotic and apoptotic cell death are also reviewed. Interventions are discussed that target the prevention of noise-induced hair cell death: the use of antioxidants to scavenge and eliminate the damaging ROS, pharmacological interventions to limit the damage resulting from ROS, and new techniques aimed at interrupting the apoptotic biochemical cascade that results in the death of irreplaceable hair cells.
Three weeks after exposure, permanent threshold shifts for the experimental groups were significantly reduced to approximately = 10-30 dB less than that for the control group (p < 0.01). Less hair cell loss was also observed in the ALCAR and NAC groups than in the control group.
Aspirin has been extensively used in clinical settings. Its side effects on auditory function, including hearing loss and tinnitus, are considered as temporary. A recent promising finding is that chronic treatment with high-dose salicylate (the active ingredient of aspirin) for several weeks enhances expression of the outer hair cell (OHC) motor protein (prestin), resulting in strengthened OHC electromotility and enhanced distortion product otoacoustic emissions (DPOAE). To follow up on these observations, we carried out two studies, one planned study of age-related hearing loss restoration and a second unrelated study of salicylate-induced tinnitus. Rats of different strains and ages were injected with salicylate at a dose of 200 mg/kg/day for 5 days per week for 3 weeks or at higher dose levels (250–350 mg/kg/day) for 4 days per week for 2 weeks. Unexpectedly, while an enhanced or sustained DPOAE was seen, permanent reductions in the amplitude of the cochlear compound action potential (CAP) and the auditory brainstem response (ABR) were often observed after the chronic salicylate treatment. The mechanisms underlying these unexpected, permanent salicylate-induced reductions in neural activity are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.