Dendrimers have been proposed as therapeutic gene delivery platforms. Their superior transfection efficiency is attributed to their ability to buffer the acidification of the endosome and attach to the nucleic acids. For effective transfection the strategy is to synthesize novel dendrimers that optimize both of these traits, but the prediction of the buffering behavior in the endosome remains elusive. It is suggested that buffering dendrimers induce an osmotic pressure sufficient to rupture the endosome and release nucleic acids, which forms to sequestrate most internalized exogenous materials. Presented here are the results of a computational study modeling osmotically-driven endosome burst, or the “proton sponge effect.” The approach builds on previous cellular simulation efforts by linking the previous model with a sponge protonation model then observing the impact on endosomal swelling and acidification. Calibrated and validated using reported experimental data, the simulations offer insights into defining the properties of suitable dendrimers for enhancing gene delivery as a function of polymer structure.
Triple-negative breast cancer (TNBC) is the deadliest form of breast cancer. Unlike other types of breast cancer that can be effectively treated by targeted therapies, no such targeted therapy exists for all TNBC patients. The ADAR1 enzyme carries out A-to-I editing of RNA to prevent sensing of endogenous double-stranded RNAs. ADAR1 is highly expressed in breast cancer including TNBC. Here, we demonstrate that expression of ADAR1, specifically its p150 isoform, is required for the survival of TNBC cell lines. In TNBC cells, knockdown of ADAR1 attenuates proliferation and tumorigenesis. Moreover, ADAR1-knockdown leads to robust translational repression. ADAR1-dependent TNBC cell lines also exhibit elevated IFN stimulated gene expression. IFNAR1 reduction significantly rescued the proliferative defects of ADAR1 loss. These findings establish ADAR1 as a novel therapeutic target for TNBC tumors.
A new method for quantifying lipid–lipid interactions within biomimetic membranes undergoing electrocompression is demonstrated by coupling droplet mechanics and membrane biophysics. The membrane properties are varied by altering the lipid packing through the introduction of cholesterol. Pendant drop tensiometry is used to measure the lipid monolayer tension at an oil–water interface. Next, two lipid-coated aqueous droplets are manipulated into contact to form a bilayer membrane at their adhered interface. The droplet geometries are captured from two angles to provide accurate measurements of both the membrane area and the contact angle between the adhered droplets. Combining the monolayer tension and contact angle measurements enables estimations of the membrane tension with respect to lipid composition. Then, the membrane is electromechanically compressed using a transmembrane voltage. Electrostatic pressure, membrane tension and the work necessary for bilayer thinning are tracked, and a model is proposed to capture the mechanics of membrane compression. The results highlight that a previously unaccounted for energetic term is produced during compression, potentially reflecting changes in the lateral membrane structure. This residual energy is eliminated in cases with cholesterol mole fractions of 0.2 and higher, suggesting that cholesterol diminishes these adjustments.
Mechanotransduction and interfacial properties in unsupported liquid biomimetic membranes are explored using the droplet-interface bilayer technique. The fluidic monolayer-membrane system afforded by this technique allows for dynamic control over the membrane dimensions and curvature, which under periodic deformations generates capacitive currents (akin to a Kelvin probe), and permits a detailed electrostatic characterization of the boundary layers as well as observation of flexoelectric effects. Both high and low displacement frequency regimes are examined, and the results show that the mechanoelectric signals generated by the membranes may be linked to the membrane electrostatic structure. In addition, we show that periodic membrane bending in a high-frequency regime generates tension sufficient to activate reconstituted mechanosensitive channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.