In the field of asymptotic performance characterization of Conditional Maximum Likelihood (CML) estimator, asymptotic generally refers to either the number of samples or the Signal to Noise Ratio (SNR) value. The first case has been already fully characterized although the second case has been only partially investigated. Therefore, this correspondence aims to provide a sound proof of a result, i.e. asymptotic (in SNR) Gaussianity and efficiency of the CML estimator in the multiple parameters case, generally regarded as trivial but not so far demonstrated.
Index TermsMaximum Likelihood, statistical efficiency, high Signal to Noise Ratio, array processing.
The derivation of tight estimation lower bounds is a key tool to design and assess the performance of new estimators. In this contribution, first, the authors derive a new compact Cramér-Rao bound (CRB) for the conditional signal model, where the deterministic parameter's vector includes a real positive amplitude and the signal phase. Then, the resulting CRB is particularised to the delay, Doppler, phase, and amplitude estimation for band-limited narrowband signals, which are found in a plethora of applications, making such CRB a key tool of broad interest. This new CRB expression is particularly easy to evaluate because it only depends on the signal samples, then being straightforward to evaluate independently of the particular baseband signal considered. They exploit this CRB to properly characterise the achievable performance of satellite-based navigation systems and the so-called real-time kinematics (RTK) solution. To the best of the authors' knowledge, this is the first time these techniques are theoretically characterised from the baseband delay/phase estimation processing to position computation, in terms of the CRB and maximum-likelihood estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.