Recently, there has been an increased interest in quantitative MR parameters to improve diagnosis and treatment. Parameter mapping requires multiple images acquired with different timings usually resulting in long acquisition times. While acquisition time can be reduced by acquiring undersampled data, obtaining accurate estimates of parameters from undersampled data is a challenging problem, in particular for structures with high spatial frequency content. In this work, Principal Component Analysis (PCA) is combined with a model-based algorithm to reconstruct maps of selected principal component coefficients from highly undersampled radial MRI data. This novel approach linearizes the cost function of the optimization problem yielding a more accurate and reliable estimation of MR parameter maps. The proposed algorithm - REconstruction of Principal COmponent coefficient Maps (REPCOM) using Compressed Sensing - is demonstrated in phantoms and in vivo and compared to two other algorithms previously developed for undersampled data.
We continue the theme of previous papers [J. Opt. Soc. Am. A 7, 1266 (1990); 12, 834 (1995)] on objective (task-based) assessment of image quality. We concentrate on signal-detection tasks and figures of merit related to the ROC (receiver operating characteristic) curve. Many different expressions for the area under an ROC curve (AUC) are derived for an arbitrary discriminant function, with different assumptions on what information about the discriminant function is available. In particular, it is shown that AUC can be expressed by a principal-value integral that involves the characteristic functions of the discriminant. Then the discussion is specialized to the ideal observer, defined as one who uses the likelihood ratio (or some monotonic transformation of it, such as its logarithm) as the discriminant function. The properties of the ideal observer are examined from first principles. Several strong constraints on the moments of the likelihood ratio or the log likelihood are derived, and it is shown that the probability density functions for these test statistics are intimately related. In particular, some surprising results are presented for the case in which the log likelihood is normally distributed under one hypothesis. To unify these considerations, a new quantity called the likelihood-generating function is defined. It is shown that all moments of both the likelihood and the log likelihood under both hypotheses can be derived from this one function. Moreover, the AUC can be expressed, to an excellent approximation, in terms of the likelihood-generating function evaluated at the origin. This expression is the leading term in an asymptotic expansion of the AUC; it is exact whenever the likelihood-generating function behaves linearly near the origin. It is also shown that the likelihood-generating function at the origin sets a lower bound on the AUC in all cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.