Thermogenesis in beige/brown adipose tissues can be leveraged to combat metabolic disorders such as type 2 diabetes and obesity. The complement system plays pleiotropic roles in metabolic homeostasis and organismal energy balance with canonical effects on immune cells and non-canonical effects on non-immune cells. The adipsin/C3a/C3aR1 pathway stimulates insulin secretion and sustains pancreatic beta cell mass. However, its role in adipose thermogenesis has not been defined. Here, we show that Adipsin knockout mice exhibit increased energy expenditure and white adipose tissue (WAT) browning. C3a, a downstream product of adipsin, is generated from complement component 3 and decreases Ucp1 expression in subcutaneous adipocytes. In addition, adipocyte-specific C3aR1 knockout male mice show enhanced WAT thermogenesis and increased respiration. In stark contrast, adipocyte-specific C3aR1 knockout female mice display decreased brown fat thermogenesis and are cold intolerant. Female mice express lower levels of Adipsin in thermogenic adipocytes and adipose tissues than males. C3aR1 is also lower in female subcutaneous adipose tissue than males. Collectively, these results reveal sexual dimorphism in the adipsin/C3a/C3aR1 axis in regulating adipose thermogenesis. Our findings establish a newly discovered role of the alternative complement pathway in adipose thermogenesis and highlight sex-specific considerations in potential therapeutic targets for metabolic diseases.
The immune system coordinates the response to cardiac injury and is known to control regenerative and fibrotic scar outcomes in the heart and subsequent chronic low-grade inflammation associated with heart failure. Here we profiled the inflammatory response to heart injury using single cell transcriptomics to compare and contrast two experimental models with disparate outcomes. We used adult mice, which like humans lack the ability to fully recover and zebrafish which spontaneously regenerate after heart injury. The extracardiac reaction to cardiomyocyte necrosis was also interrogated to assess the specific peripheral tissue and immune cell reaction to chronic stress. Cardiac macrophages are known to play a critical role in determining tissue homeostasis by healing versus scarring. We identified distinct transcriptional clusters of monocytes/macrophages in each species and found analogous pairs in zebrafish and mice. However, the reaction to myocardial injury was largely disparate between mice and zebrafish. The dichotomous response to heart damage between the mammalian and zebrafish monocytes/macrophages may underlie the impaired regenerative process in mice, representing a future therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.