The federally threatened northern spotted owl (Strix occidentalis caurina) is the focus of intensive conservation efforts that have led to much forested land being reserved as habitat for the owl and associated wildlife species throughout the Pacific Northwest of the United States. Recently, however, a relatively new threat to spotted owls has emerged in the form of an invasive competitor: the congeneric barred owl (S. varia). As barred owls have rapidly expanded their populations into the entire range of the northern spotted owl, mounting evidence indicates that they are displacing, hybridizing with, and even killing spotted owls. The range expansion by barred owls into western North America has made an already complex conservation issue even more contentious, and a lack of information on the ecological relationships between the 2 species has hampered recovery efforts for northern spotted owls. We investigated spatial relationships, habitat use, diets, survival, and reproduction of sympatric spotted owls and barred owls in western Oregon, USA, during 2007USA, during -2009. Our overall objective was to determine the potential for and possible consequences of competition for space, habitat, and food between these previously allopatric owl species. Our study included 29 spotted owls and 28 barred owls that were radio-marked in 36 neighboring territories and monitored over a 24-month period. Based on repeated surveys of both species, the number of territories occupied by pairs of barred owls in the 745-km 2 study area (82) greatly outnumbered those occupied by pairs of spotted owls (15). Estimates of mean size of home ranges and core-use areas of spotted owls (1,843 ha and 305 ha, respectively) were 2-4 times larger than those of barred owls (581 ha and 188 ha, respectively). Individual spotted and barred owls in adjacent territories often had overlapping home ranges, but interspecific space sharing was largely restricted to broader foraging areas in the home range with minimal spatial overlap among coreuse areas. We used an information-theoretic approach to rank discrete-choice models representing alternative hypotheses about the influence of forest conditions, topography, and interspecific interactions on species-specific patterns of nighttime resource selection. Spotted owls spent a disproportionate amount of time foraging on steep slopes in ravines dominated by old (>120 yr) conifer trees. Barred owls used available forest types more evenly than spotted owls, and were most strongly associated with patches of large hardwood and conifer trees that occupied relatively flat areas along streams. Spotted and barred owls differed in the relative use of old conifer forest (greater for spotted owls) and slope conditions (steeper slopes for spotted owls), but we found no evidence that the 2 species differed in their use of young, mature, and riparian-hardwood forest types. Mean overlap in proportional use of different forest types between individual spotted owls and barred owls in adjacent territories was 81% (range ¼ 30...
Estimates of species' vital rates and an understanding of the factors affecting those parameters over time and space can provide crucial information for management and conservation. We used mark-recapture, reproductive output, and territory occupancy data collected during 1985-2013 to evaluate population processes of Northern Spotted Owls (Strix occidentalis caurina) in 11 study areas in Washington, Oregon, and northern California, USA. We estimated apparent survival, fecundity, recruitment, rate of population change, and local extinction and colonization rates, and investigated relationships between these parameters and the amount of suitable habitat, local and regional variation in meteorological conditions, and competition with Barred Owls (Strix varia). Data were analyzed for each area separately and in a meta-analysis of all areas combined, following a strict protocol for data collection, preparation, and analysis. We used mixed effects linear models for analyses of fecundity, Cormack-Jolly-Seber open population models for analyses of apparent annual survival (/), and a reparameterization of the Jolly-Seber capture-recapture model (i.e. reverse Jolly-Seber; RJS) to estimate annual rates of population change (k RJS ) and recruitment. We also modeled territory occupancy dynamics of Northern Spotted Owls and Barred Owls in each study area using 2-species occupancy models. Estimated mean annual rates of population change (k) suggested that Spotted Owl populations declined from 1.2% to 8.4% per year depending on the study area. The weighted mean estimate of k for all study areas was 0.962 (6 0.019 SE; 95% CI: 0.925-0.999), indicating an estimated range-wide decline of 3.8% per year from 1985 to 2013. Variation in recruitment rates across the range of the Spotted Owl was best explained by an interaction between total winter precipitation and mean minimum winter temperature. Thus, recruitment rates were highest when both total precipitation (29 cm) and minimum winter temperature (À9.58C) were lowest. Barred Owl presence was associated with increased local extinction rates of Spotted Owl pairs for all 11 study areas. Habitat covariates were related to extinction rates for Spotted Owl pairs in 8 of 11 study areas, and a greater amount of suitable owl habitat was generally associated with decreased extinction rates. We observed negative effects of Barred Owl presence on colonization rates of Spotted Owl pairs in 5 of 11 study areas. The total amount of suitable Spotted Owl habitat was positively associated with colonization rates in 5 areas, and more habitat disturbance was associated with lower colonization rates in 2 areas. We observed strong declines in derived estimates of occupancy in all study areas. Mean fecundity of females was highest for adults (0.309 6 0.027 SE), intermediate for 2-yr-olds (0.179 6 0.040 SE), and lowest for 1-yr-olds (0.065 6 0.022 SE). The presence of Barred Owls and habitat covariates explained little of the temporal variation in fecundity in most study areas. Climate covariates ...
We analyzed demographic data from northern spotted owls (Strix occidentalis caurina) from 14 study areas in Washington, Oregon, and California for 1985-2003. The purpose of our analyses was to provide an assessment of the status and trends of northern spotted owl populations throughout most of their geographic range. The 14 study areas made up approximately 12% of the range of the subspecies and included federal, tribal, private, and mixed federal and private lands. The study areas also included all the major forest types that the subspecies inhabits. The analyses followed rigorous protocols that were developed a priori and were the result of extensive discussions and consensus among the authors. Our primary objectives were to estimate fecundity, apparent survival (/), and annual rate of population change (k) and to determine if there were any temporal trends in these population parameters. In addition to analyses of data from individual study areas, we conducted 2 meta-analyses on each demographic parameter. One meta-analysis was conducted on all 14 areas, and the other was restricted to the 8 areas that constituted the Effectiveness Monitoring Plan for northern spotted owls under the Northwest Forest Plan. The average number of years of reproductive data per study area was 14 (range ¼ 5-19), and the average number of recapture occasions per study area was 13 (range ¼ 4-18). Only 1 study area had ,12 years of data. Our results were based on 32,054 captures and resightings of 11,432 banded individuals for estimation of survival and 10,902 instances in which we documented the number of young produced by territorial females.The number of young fledged (NYF) per territorial female was analyzed by testing a suite of a priori models that included (1) effects of age, (2) linear or quadratic time trends, (3) presence of barred owls (Strix varia) in spotted owl territories, and (4) an even-odd year effect. The NYF varied among years on most study areas with a biennial cycle of high reproduction in even-numbered years and low reproduction in odd-numbered years. These cyclic fluctuations did not occur on all study areas, and the even-odd year effect waned during the last 5 years of the study. Fecundity was highest for adults (x¼0.372, SE¼0.029), lower for 2-year-olds (x¼0.208, SE¼0.032), and very low for 1-year-olds (x¼0.074, SE¼ 0.029). Fecundity was stable over time for 6 areas (Rainier, Olympic, Warm Springs, H. J. Andrews, Klamath, and Marin), declining for 6 areas (Wenatchee, Cle Elum, Oregon Coast Range, Southern Oregon Cascades, Northwest California, and Simpson), and slightly increasing for 2 areas (Tyee, Hoopa). We found little association between NYF and the proportion of northern spotted owl territories where barred owls were detected, although results were suggestive of a negative effect of barred owls on the Wenatchee and Olympic study areas. The meta-analysis on fecundity indicated substantial annual variability with no increasing or decreasing trends. Fecundity was highest in the mixed-conifer region of eas...
Northern spotted owls (Strix occidentalis caurina) have been studied intensively since their listing as a threatened species by the U.S. Fish and Wildlife Service in 1990. Studies of spotted owl site occupancy have used various binary response measures, but most of these studies have made the assumption that detectability is perfect, or at least high and not variable. Further, previous studies did not consider temporal variation in site occupancy. We used relatively new methods for open population modeling of site occupancy that incorporated imperfect and variable detectability of spotted owls and allowed modeling of temporal variation in site occupancy, extinction, and colonization probabilities. We also examined the effects of barred owl (S. varia) presence on these parameters. We used spotted owl survey data from 1990 to 2002 for 3 study areas in Oregon, USA, and we used program MARK to develop and analyze site occupancy models. We found per visit detection probabilities averaged <0.70 and were highly variable among study years and study areas. Site occupancy probabilities for owl pairs declined greatly on 1 study area and slightly on the other 2 areas. For all owls, including singles and pairs, site occupancy was mostly stable through time. Barred owl presence had a negative effect on spotted owl detection probabilities, and it had either a positive effect on local‐extinction probabilities or a negative effect on colonization probabilities. We conclude that further analyses of spotted owls must account for imperfect and variable detectability and barred owl presence to properly interpret results. Further, because barred owl presence is increasing within the range of northern spotted owls, we expect to see further declines in the proportion of sites occupied by spotted owls.
The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competition's importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading species (Barred Owl, Strix varia) and a resident species (Northern Spotted Owl, Strix occidentalis caurina) in a 1000-km study area over a 22-year period. Past studies of these competitors have focused on the dynamics of one species at a time, hindering efforts to parse out the roles of habitat and competition and to forecast the future of the resident species. In addition, while these studies accounted for the imperfect detection of the focal species, no multi-season analysis of these species has accounted for the imperfect detection of the secondary species, potentially biasing inference. We analyzed survey data using models that combine the general multistate-multi-season occupancy modeling framework with autologistic modeling, allowing us to account for important aspects of our study system. We found that local extinction probability increases for each species when the other is present; however, the effect of the invader on the resident is greater. Although the species prefer different habitats, these habitats are highly correlated at the patch scale, and the impacts of invader on the resident are greatest in patches that would otherwise be optimal. As a consequence, competition leads to a weaker relationship between habitat and Northern Spotted Owl occupancy. Colonization and extinction rates of the invader are closely related to neighborhood occupancy, and over the first half of the study the availability of colonists limited the rate of population growth. Competition is likely to exclude the resident species, both through its immediate effects on local extinction and by indirectly lowering colonization rates as Northern Spotted Owl occupancy declines. Our analysis suggests that dispersal limitation affects both the invasion dynamics and the scale at which the effects of competition are observed. We also provide predictions regarding the potential costs and benefits of managing Barred Owl populations at different target levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.