We describe principal features of the newly released version, NBO 6.0, of the natural bond orbital analysis program, that provides novel ' 'link-free' ' interactivity with host electronic structure systems, improved search algorithms and labeling conventions for a broader range of chemical species, and new analysis options that significantly extend the range of chemical applications. We sketch the motivation and implementation of program changes and describe newer analysis options with illustrative applications.
We briefly outline some leading features of the newest version, NBO 7.0, of the natural bond orbital (NBO) wavefunction analysis program. Major extensions include: (1) a new NPEPA module implementing Karafiloglou's "polyelectron population analysis" in the NBO framework; (2) new RDM2 program infrastructure for describing electron correlation effects based on full evaluation of the second-order reduced density matrix;(3) improved convex-solver implementation of natural resonance theory (NRT), allowing a greatly expanded range of applications and associated "resonance NBO" (RNBO) visualization of chemical reactivity; (4) a variety of other improvements in well-established NBO algorithms. We also provide brief introduction to the new NBOPro@Jmol utility program, a plugin to the Jmol chemical structure viewer that serves as a convenient tool to provide on-demand NBO descriptors or orbital visualizations for a broad variety of chemical inquiries in research or classroom applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.