A good spatial discretization is of prime interest in the accuracy of the Finite Element Method. This paper presents a new refinement criterion dedicated to an h-type refinement method called Conforming Hierarchical Adaptive Refinement MethodS (CHARMS) and applied to solid mechanics. This method produces conformally refined meshes and deals with refinement from a basis function point of view. The proposed refinement criterion allow adaptive refinement where the mesh is still too coarse and where a strain or a stress field has a large value or a large gradient. The sensitivity of the criterion to the value or to the gradient ca be adjusted. The method and the criteria are validated through 2-D test cases. One limitation of the h-adaptive refinement method is highlighted: the discretization of boundary curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.