We have investigated how the non-zwitterionic and zwitterionic structures of aliphatic-only tripeptides affect the formation and dissociation of peptide radical cations in the gas phase. The non-zwitterionic forms of the aliphatic-only peptides in their metal complexes play an important role in determining whether the electron transfer pathway predominates. We extended this study by synthesizing permanent non-zwitterionic and zwitterionic forms of aliphatic-only peptide radical cations and exploring their reactivities in the gas phase. Collision-induced dissociation spectra demonstrated the feasibility of generating both non-zwitterionic and zwitterionic forms. Radical cations in zwitterionic forms may indeed mediate the beta and gamma carbon-carbon bond cleavages of leucine and isoleucine side chains from the GlyGlyXle radical peptides; this feature allows leucine and isoleucine residues to be distinguished unambiguously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.