Research in the field of catalytic reduction of carbon dioxide to liquid fuels has grown rapidly in the past few decades. This is due to the increasing amount of carbon dioxide in the atmosphere and a steady climb in global fuel demand. This tutorial review will present much of the significant work that has been done in the field of electrocatalytic and homogeneous reduction of carbon dioxide over the past three decades. It will then extend the discussion to the important conclusions from previous work and recommendations for future directions to develop a catalytic system that will convert carbon dioxide to liquid fuels with high efficiencies.
Electrocatalytic properties, X-ray crystallographic studies, and infrared spectroelectrochemistry (IR-SEC) of Mn(bpy-tBu)(CO)3Br and [Mn(bpy-tBu)(CO)3(MeCN)](OTf) are reported. Addition of Brönsted acids to CO2-saturated solutions of these Mn complexes and subsequent reduction of the complexes lead to the stable and efficient production of CO from CO2. Unlike the analogous Re catalysts, these Mn catalysts require the addition of Brönsted acids for catalytic turnover. Current densities up to 30 mA/cm(2) were observed during bulk electrolysis using 5 mM Mn(bpy-tBu)(CO)3Br, 1 M 2,2,2-trifluoroethanol, and a glassy carbon working electrode. During bulk electrolysis at -2.2 V vs SCE, a TOF of 340 s(-1) was calculated for Mn(bpy-tBu)(CO)3Br with 1.4 M trifluoroethanol, corresponding to a Faradaic efficiency of 100 ± 15% for the formation of CO from CO2, with no observable production of H2. When compared to the analogous Re catalysts, the Mn catalysts operate at a lower overpotential and exhibit similar catalytic activities. X-ray crystallography of the reduced species, [Mn(bpy-tBu)(CO)3](-), shows a five-coordinate Mn center, similar to its rhenium analogue. Three distinct species were observed in the IR-SEC of Mn(bpy-tBu)(CO)3Br. These were of the parent Mn(bpy-tBu)(CO)3Br complex, the dimer [Mn(bpy-tBu)(CO)3]2, and the [Mn(bpy-tBu)(CO)3](-) anion.
The effective design of an artificial photosynthetic system entails the optimization of several important interactions. Herein we report stopped-flow UV-visible (UV-vis) spectroscopy, X-ray crystallographic, density functional theory (DFT), and electrochemical kinetic studies of the Reðbipy-tBuÞðCOÞ 3 ðLÞ catalyst for the reduction of CO 2 to CO. A remarkable selectivity for CO 2 over H þ was observed by stopped-flow UV-vis spectroscopy of ½Reðbipy-tBuÞðCOÞ 3 −1 . The reaction with CO 2 is about 25 times faster than the reaction with water or methanol at the same concentrations. X-ray crystallography and DFT studies of the doubly reduced anionic species suggest that the highest occupied molecular orbital (HOMO) has mixed metal-ligand character rather than being purely doubly occupied d z 2 , which is believed to determine selectivity by favoring CO 2 (σ þ π) over H þ (σ only) binding. Electrocatalytic studies performed with the addition of Brönsted acids reveal a primary H∕D kinetic isotope effect, indicating that transfer of protons to Re-CO 2 is involved in the rate limiting step. Lastly, the effects of electrode surface modification on interfacial electron transfer between a semiconductor and catalyst were investigated and found to affect the observed current densities for catalysis more than threefold, indicating that the properties of the electrode surface need to be addressed when developing a homogeneous artificial photosynthetic system. carbon dioxide reduction | electrochemistry | kinetics | electrocatalyst T he development of artificial photosynthetic systems is of immediate concern in view of the world's dependence on fossil fuels and the increasing emissions of CO 2 . Rapid industrial growth in developing nations will significantly increase the global energy demand in coming years, and although known reserves of fuels such as natural gas and coal are sufficient for the near future, they are becoming increasingly costly to obtain. As the use of fossil fuels is fundamentally unsustainable and generates greenhouse gases and other pollutants, the development of environmentally benign energy sources is important. Solar energy is an abundant alternative but suffers from being a diffuse energy source, and its availability varies by location and time of day. If we can capture solar energy and use CO 2 as a C 1 feedstock for liquid fuels, we can envision converting our global energy economy into a nearly carbon-neutral system (1).Photosynthesis is one of the great triumphs of nature and is the cornerstone for advanced life on the planet. Mankind has yet to master nature's ability to store sunlight as chemical energy by splitting CO 2 and H 2 O to form C─C, C─H, and O─O bonds. The energy-dense liquid fuels formed by this process would have the advantage of conforming to the existing infrastructure. Photosynthesis can be divided into two parts: water splitting and reduction of carbon dioxide. Water oxidation has been reviewed extensively by others (2-4).Our laboratory is currently exploring the development of C...
We modify the fundamental electronic properties of metallic (1T phase) nanosheets of molybdenum disulfide (MoS) through covalent chemical functionalization, and thereby directly influence the kinetics of the hydrogen evolution reaction (HER), surface energetics, and stability. Chemically exfoliated, metallic MoS nanosheets are functionalized with organic phenyl rings containing electron donating or withdrawing groups. We find that MoS functionalized with the most electron donating functional group (p-(CHCH)NPh-MoS) is the most efficient catalyst for HER in this series, with initial activity that is slightly worse compared to the pristine metallic phase of MoS. The p-(CHCH)NPh-MoS is more stable than unfunctionalized metallic MoS and outperforms unfunctionalized metallic MoS for continuous H evolution within 10 min under the same conditions. With regards to the entire studied series, the overpotential and Tafel slope for catalytic HER are both directly correlated with the electron donating strength of the functional group. The results are consistent with a mechanism involving ground-state electron donation or withdrawal to/from the MoS nanosheets, which modifies the electron transfer kinetics and catalytic activity of the MoS nanosheet. The functional groups preserve the metallic nature of the MoS nanosheets, inhibiting conversion to the thermodynamically stable semiconducting state (2H) when mildly annealed in a nitrogen atmosphere. We propose that the electron density and, therefore, reactivity of the MoS nanosheets are controlled by the attached functional groups. Functionalizing nanosheets of MoS and other transition metal dichalcogenides provides a synthetic chemical route for controlling the electronic properties and stability within the traditionally thermally unstable metallic state.
We report a series of complexes synthesized from the chemical reduction of the fac-tricarbonyl complex Re(bpy)(CO)(3)Cl. Synthesis and characterization of [Re(bpy)(CO)(3)](2), [Re(bpy)(CO)(3)](2)(-), and Re(bpy)(CO)(3)(-) are presented. The Re(bpy)(CO)(3)(-) anion has long been postulated as the active species that reacts with carbon dioxide in the electrochemical reduction of CO(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.