In cancer metastasis, only a small percentage of cells released from a primary tumor successfully form distant lesions, but it is uncertain at which steps in the process cells are lost. Our goal was to determine what proportions of B16F1 melanoma cells injected intraportally to target mouse liver 1) survive and extravasate, 2) form micrometastases (4 to 16 cells) by day 3, 3) develop into macroscopic tumors by day 13, and 4) remain as solitary dormant cells. Using in vivo videomicroscopy, a novel cell accounting assay, and immunohistochemical markers for proliferation (Ki-67) and apoptosis (TUNEL), we found that 1) 80% of injected cells survived in the liver microcirculation and extravasated by day 3, 2) only a small subset of extravasated cells began to grow, with 1 in 40 forming micrometastases by day 3, 3) only a small subset of micrometastases continued to grow, with 1 in 100 progressing to form macroscopic tumors by day 13 (in fact, most micrometastases disappeared), and 4) 36% of injected cells remained by day 13 as solitary cancer cells, most of which were dormant (proliferation, 2%; apoptosis, 3%; in contrast to cells within macroscopic tumors: proliferation, 91%; apoptosis/necrosis, 6%). Thus, in this model, metastatic inefficiency is principally determined by two distinct aspects of cell growth after extravasation: failure of solitary cells to initiate growth and failure of early micrometastases to continue growth into macroscopic tumors.
Metastases are responsible for the majority of failures in cancer treatment. Clarifying steps in metastasis and their molecular mechanisms will be important for the development of anti-metastasis therapeutic strategies. Considerable progress has been made in identifying molecules involved in metastasis. However, because of the nature of assays that have been available, conclusions about steps in metastasis and their molecular bases have been drawn primarily from inference. In order to complete the picture of how metastases form, a technique is needed to directly watch the process in vivo as it occurs over time. We have developed an intravital videomicroscopy (IVVM) procedure to make such observations possible. Results from IVVM are providing us with new conceptual understanding of the metastatic process, as well as the nature and timing of the contributions of molecules implicated in metastasis (e.g. adhesion molecules and proteinases). Our findings suggest that early steps in metastasis, including hemodynamic destruction and extravasation, may contribute less to metastatic inefficiency than previously believed. Instead, our results suggest that the control of post-extravasation growth of individual cancer cells is a significant contributor to metastatic inefficiency. Thus, this stage may be an appropriate target for design of novel strategies to prevent metastases.
Biomechanical interactions of cancer cells with the microvasculature were studied using high resolution intravital videomicroscopy. We compared initial arrest of murine B16F10 melanoma and D2A1 mammary carcinoma cells fluorescently labelled with calcein-AM, in low pressure (liver) vs high pressure (cremaster muscle) microvascular beds. Cells were arrested due to size restriction at the inflow side of the microcirculation, penetrating further and becoming more deformed in muscle than liver [median length to width ratios of 3.3 vs 1.3 for D2A1 cells, and 2.5 vs 1.2 for B16F10, at 1 min post-injection (p.i.)]. During the next 2 h many cells became stretched, giving maximum length to width ratios of 68 vs 22.1 (D2A1) and 28 vs 5.6 (B16F10) in muscle vs liver. Ethidium bromide exclusion demonstrated that over 97% of the cells maintained membrane integrity for > 2 h p.i. (In contrast, when an acridine orange labelling procedure was used, membrane disruption of B16F10 cells occurred within 15 min p.i.) Our experiments do not indicate the ultimate fate of the cancer cells, but if cell lysis occurs it must be on a time scale of hours rather than minutes. We report a process of 'clasmatosis' in cancer cells arrested in the microcirculation: large membrane-enclosed fragments (> 3 microns in diameter) became 'pinched off' from arrested cells, in both liver and muscle, often within minutes or even seconds of arrest. The significance of this process is not yet understood. In this study intravital videomicroscopy has thus provided a valuable clarification of the interactions of cancer cells with vessel walls during metastasis.
We examined the extravasation and subsequent migration and growth of murine mammary tumor cell lines (D2A1 and D2.OR) which differ in their metastatic ability in lung and liver, invasiveness in vitro and expression of the cysteine proteinase cathepsin L. In light of the differences in invasiveness and cathepsin L expression, we hypothesized that during hematogenous metastasis the two cell lines would differ primarily in their ability to extravasate. We used in vivo videomicroscopy of mouse liver and chick embryo chorioallantoic membrane to examine the process and timing of extravasation and subsequent steps in metastasis for these cell lines. In contrast to our expectations, no differences were found between the cell lines in either the timing or mechanism of extravasation, at least 95% of cells having extravasated by 3 days after injection. However, after extravasation, the more metastatic and invasive D2A1 cells showed a greater ability to migrate to sites which favor tumor growth and to replicate to form micrometastases. These studies point to post-extravasation events (migration and growth) as being critical in metastasis formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.