Selective harvest of large individuals should alter natural adaptive landscapes and drive evolution toward reduced somatic growth and increased reproductive investment. However, few studies have simultaneously considered the relative importance of artificial and natural selection in driving trait changes in wild populations. Using 50 years of individual-based data on Windermere pike (Esox lucius), we show that trait changes tracked the adaptive peak, which moved in the direction imposed by the dominating selective force. Individual lifetime somatic growth decreased at the start of the time series because harvest selection was strong and natural selection was too weak to override the strength of harvest selection. However, natural selection favoring fast somatic growth strengthened across the time series in parallel with the increase in pike abundance and, presumably, cannibalism. Harvest selection was overridden by natural selection when the fishing effort dwindled, triggering a rapid increase in pike somatic growth. The two selective forces appear to have acted in concert during only one short period of prey collapse that favored slow-growing pike. Moreover, increased somatic growth occurred concurrently with a reduction in reproductive investment in young and small female pike, indicating a tradeoff between growth and reproduction. The age-specific amplitude of this change paralleled the age-specific strength of harvest pressure, suggesting that reduced investment was also a response to increased life expectancy. This is the first study to demonstrate that a consideration of both natural selection and artificial selection is needed to fully explain time-varying trait dynamics in harvested populations.adaptive landscapes ͉ conservation ͉ contemporary evolution ͉ fisheries ͉ top predators
The ability of natural selection to drive local adaptation has been appreciated ever since Darwin. Whether human impacts can impede the adaptive process has received less attention. We tested this hypothesis by quantifying natural selection and harvest selection acting on a freshwater fish (pike) over four decades. Across the time series, directional natural selection tended to favour large individuals whereas the fishery targeted large individuals. Moreover, non-linear natural selection tended to favour intermediate sized fish whereas the fishery targeted intermediate sized fish because the smallest and largest individuals were often not captured. Thus, our results unequivocally demonstrate that natural selection and fishery selection often acted in opposite directions within this natural system. Moreover, the two selective factors combined to produce reduced fitness overall and stronger stabilizing selection relative to natural selection acting alone. The long-term ramifications of such human-induced modifications to adaptive landscapes are currently unknown and certainly warrant further investigation.
Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.