This study presents a detailed exhaust emission characterization of an EMD 2-Stroke turbocharged line haul locomotive diesel engine fitted with an early-development Tier 0+ emissions kit. The objective of this work is to use emissions characterization to gain insight into engine operation and mechanisms of pollutant formation for this family of engine, and identify areas of potential future engine emissions improvement. Results show that at the notches tested (notches 3–8) the largest contributor to PM mass is insolubles (mostly elemental carbon), but that the soluble component of PM, comprising 14–32% of PM, is also significant. GC-FID analysis of the soluble portion shows that it is composed of 55–77% oil-like C22-C30+ hydrocarbons, with the remainder being fuel-like C9-C21 hydrocarbons. The emissions characterization suggests that advancing combustion timing should be effective in reducing PM mass by reducing the insoluble portion (elemental carbon) of PM at all notches. NOx will likely increase, but the current level of NOx is sufficiently below Tier 0+ limits to allow a moderate increase. Reducing engine oil consumption should also reduce PM mass at all notches, although to a smaller degree than measures that reduce the insoluble portion of PM.
This study presents a detailed exhaust emission characterization of a 2-Stroke turbocharged line haul locomotive diesel engine fitted with an early-development Tier 0 + emissions kit. The objective of this work is to use emissions characterization to gain insight into engine operation and mechanisms of pollutant formation for this family of engine, and identify areas of potential future engine emissions improvement. Results show that at the notches tested (notches 3–8) the largest contributor to particulate matter (PM)mass is insolubles (mostly elemental carbon), but that the soluble component of PM, comprising 14–32% of PM, is also significant. Gas chromatography (GC) analysis of the soluble portion shows that it is composed of 55–77% oil-like C22–C30+ hydrocarbons, with the remainder being fuel-like C9–C21 hydrocarbons. The emissions characterization suggests that advancing combustion timing should be effective in reducing PM mass by reducing the insoluble portion (elemental carbon) of PM at all notches. NOx will likely increase, but the current level of NOx is sufficiently below Tier 0+ limits to allow a moderate increase. Reducing engine oil consumption should also reduce PM mass at all notches, although to a smaller degree than measures that reduce the insoluble portion of PM.
The effects of injection timing on combustion, NO^, PM mass and composition from a 2-stroke turbocharged Tier 0-\-locomotive diesel engine are investigated in this study. Results provide insight into how injection timing affects combustion and emissions in this family of engine and identifies areas of potential future emissions reduction. For a range of injection timings at a medium load (notch 5) operating condition, the majority of PM mass is insolubles (81-89%), while the soluble component of PM (SOF) accounts for a smaller fraction (11-19%) of total PM mass. The SOF is 66-80% oil-like C22-C30+ hydrocarbons, with the remainder being fuel-like Cg-C2i hydrocarbons. A heat release analysis is used to calculate mass fraction burned curves and elucidates how injection timing affects combustion. Retarding injection timing retards combustion phasing, decreases peak cylinder pressure and temperature, and increases expansion pressure and temperature. Results show that insolubles and fuel-like hydrocarbons increase, and oillike hydrocarbons decrease with later injection timing. Analysis suggests that insolubles and fuel-like HC increase due to lower peak combustion temperature, while oil-like HC, which are distributed more widely throughout the cylinder, decrease due to higher expansion temperatures. The net result is that total PM mass increases with retarded combustion phasing, mostly due to increased insolubles. Considering the high fraction of insoluble PM (81-89%) at all injection timings tested at notch 5, steps taken to reduce PM elemental carbon should be the most effective path for future reductions in PM emissions. Further reductions in oil consumption may also reduce PM, but to a smaller extent.
This study investigates how injection timing affects combustion, NOx, PM mass and composition from a 2-stroke turbocharged locomotive diesel engine fitted with an early-development Tier 0+ emissions kit. The objective of the work is to gain insight into how injection timing affects combustion and emissions in this family of engines, modified to meet the newly implemented Tier 0+ emissions requirements, and to identify areas of potential future emissions reduction. For a range of injection timings at a medium load (notch 5) operating condition, the majority of PM mass is comprised of insolubles (81–89%), while the soluble component of PM (SOF) accounts for a smaller fraction (11–19%) of total PM mass. The SOF is 66–80% oil-like C22–C30+ hydrocarbons, with the remainder being fuel-like C9–C21 hydrocarbons. A heat release analysis is used to elucidate how injection timing affects combustion by calculating mass fraction burn curves. It is observed that retarding injection timing retards combustion phasing, decreases peak cylinder pressure and temperature, and increases expansion pressure and temperature. Results show that insolubles and fuel-like hydrocarbons increase and oil-like hydrocarbons decrease with later injection timing. Analysis suggests that insolubles and fuel-like HC increase due to lower peak combustion temperature, while oil-like HC, which are distributed more widely throughout the cylinder, decrease due to higher expansion temperatures. The net result is that total PM mass increases with retarded combustion phasing, mostly due to increased insolubles. Considering the high fraction of insoluble PM (81–89%) at all injection timings tested at notch 5, steps taken to reduce PM elemental carbon should be the most effective path for future reductions in PM emissions. Further reductions in oil consumption may also reduce PM, but to a smaller extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.