With the development of distributed energy resources (DERs) and advancements in technology, microgrids (MGs) appear primed to become an even more integral part of the future distribution grid. In order to transition to the smart grid of the future, MGs must be properly managed and controlled. This paper proposes a microgrid energy management system (MGEMS) based on a hybrid control algorithm that combines Transactive Control (TC) and Model Predictive Control (MPC) for an efficient management of DERs in prosumer-centric networked MGs. A locally installed home energy management system (HEMS) determines a charge schedule for the battery electric vehicle (BEV) and a charge–discharge schedule for the solar photovoltaic (PV) and battery energy storage system (BESS) to reduce residential customers’ operation cost and to improve their overall savings. The proposed networked MGEMS strategy was implemented in IEEE 33-bus test system and evaluated under different BEV and PV-BESS penetration scenarios to study the potential impact that large amounts of BEV and PV-BESS systems can have on the distribution system and how different pricing mechanisms can mitigate these impacts. Test results indicate that our proposed MGEMS strategy shows potential to reduce peak load and power losses as well as to enhance customers’ savings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.