Marine polysaccharides are part of the huge seaweeds resources and present many applications for several industries. In order to widen their potential as additives or bioactive compounds, some structural modifications have been studied. Among them, simple hydrophobization reactions have been developed in order to yield to grafted polysaccharides bearing acyl-, aryl-, alkyl-, and alkenyl-groups or fatty acid chains. The resulting polymers are able to present modified physicochemical and/or biological properties of interest in the current pharmaceutical, cosmetics, or food fields. This review covers the chemical structures of the main marine polysaccharides, and then focuses on their structural modifications, and especially on hydrophobization reactions mainly esterification, acylation, alkylation, amidation, or even cross-linking reaction on native hydroxyl-, amine, or carboxylic acid functions. Finally, the question of the necessary requirement for more sustainable processes around these structural modulations of marine polysaccharides is addressed, considering the development of greener technologies applied to traditional polysaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.