Strain engineering is one of the most promising and effective routes toward continuously tuning the electronic and optic properties of materials, while thermal properties are generally believed to be insensitive to mechanical strain. In this paper, the strain-dependent thermal conductivity of monolayer silicene under uniform bi-axial tension is computed by solving the phonon Boltzmann transport equation with force constants extracted from first-principles calculations. Unlike the commonly believed understanding that thermal conductivity only slightly decreases with increased tensile strain for bulk materials, it is found that the thermal conductivity of silicene first increases dramatically with strain and then slightly decreases when the applied strain increases further. At a tensile strain of 4%, the highest thermal conductivity is found to be about 7.5 times that of unstrained one. Such an unusual strain dependence is mainly attributed to the dramatic enhancement in the acoustic phonon lifetime. Such enhancement plausibly originates from the flattening of the buckling of the silicene structure upon stretching, which is unique for silicene as compared with other common two-dimensional materials. Our findings offer perspectives of modulating the thermal properties of low-dimensional structures for applications such as thermoelectrics, thermal circuits, and nanoelectronics.
The present investigation searched for new boron nitride (BN) polymorphs by means of first-principles simulations. The ab initio random structure searching strategy was implemented. The electronic and mechanical properties and equation of states of three new metastable BN crystal forms with equilibrium energies close to the most stable B4N4 form, c-BN, are presented. Results show either dynamically stable semiconductors or insulators, one of which is even slightly harder than c-BN. The equation of states is also presented and a phase transition is predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.