New SPECT camera technology with low isotope dose significantly reduces ionizing radiation exposure and imaging times compared to traditional protocols while maintaining image quality and diagnostic accuracy.
A substantial amount data is available on restorative materials used in pediatric dentistry; however, there exists substantial evidence from systematic reviews and randomized clinical trials and clinicians need to examine and understand the available literature evidence carefully to aid them in clinical decision making.
In this group of non-obese patients undergoing low stress dose imaging, high-efficiency CZT SPECT imaging demonstrated a high sensitivity, specificity, and accuracy for detecting obstructive epicardial CAD with a greatly reduced imaging time.
This paper presents a model-based blind system identification approach to estimation of central aortic blood pressure (BP) waveform from noninvasive diametric circulatory signals. First, we developed a mathematical model to reproduce the relationship between central aortic BP waveform and a class of noninvasive circulatory signals at diametric locations by combining models to represent wave propagation in the artery, arterial pressure–volume relationship, and mechanics of the measurement instrument. Second, we formulated the problem of estimating central aortic BP waveform from noninvasive diametric circulatory signals into a blind system identification problem. Third, we performed identifiability analysis to show that the mathematical model could be identified and its parameters determined up to an unknown scale. Finally, we illustrated the feasibility of the approach by applying it to estimate central aortic BP waveform from two diametric pulse volume recording (PVR) signals. Experimental results from ten human subjects showed that the proposed approach could estimate central aortic BP waveform accurately: the average root-mean-squared error (RMSE) associated with the central aortic BP waveform was 4.1 mm Hg (amounting to 4.5% of the underlying mean BP) while the average errors associated with central aortic systolic pressure (SP) and pulse pressure (PP) were 2.4 mm Hg and 2.0 mm Hg (amounting to 2.5% and 2.1% of the underlying mean BP). The proposed approach may contribute to the improved monitoring of cardiovascular (CV) health by enabling estimation of central aortic BP waveform from conveniently measurable diametric circulatory signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.