Although historically materials discovery has been driven by a laborious trial-and-error process, knowledge-driven materials design can now be enabled by the rational combination of Machine Learning methods and materials databases. Here, data from the AFLOW repository for ab initio calculations is combined with Quantitative Materials Structure-Property Relationship models to predict important properties: metal/insulator classification, band gap energy, bulk/shear moduli, Debye temperature and heat capacities. The prediction's accuracy compares well with the quality of the training data for virtually any stoichiometric inorganic crystalline material, reciprocating the available thermomechanical experimental data. The universality of the approach is attributed to the construction of the descriptors: Property-Labelled Materials Fragments. The representations require only minimal structural input allowing straightforward implementations of simple heuristic design rules.
A priori prediction of phase stability of materials is a challenging practice, requiring knowledge of all energetically competing structures at formation conditions. Large materials repositories-housing properties of both experimental and hypothetical compounds-offer a path to prediction through the construction of informatics-based, ab initio phase diagrams. However, limited access to relevant data and software infrastructure has rendered thermodynamic characterizations largely peripheral, despite their continued success in dictating synthesizability. Herein, a new module is presented for autonomous thermodynamic stability analysis, implemented within the open-source, ab initio framework AFLOW. Powered by the AFLUX Search-API, AFLOW-CHULL leverages data of more than 1.8 million compounds characterized in the AFLOW.org repository, and can be employed locally from any UNIX-like computer. The module integrates a range of functionality: the identification of stable phases and equivalent structures, phase coexistence, measures for robust stability, and determination of decomposition reactions. As a proof of concept, thermodynamic characterizations have been performed for more than 1300 binary and ternary systems, enabling the identification of several candidate phases for synthesis based on their relative stability criterion-including 17 promising C15 -type structures and 2 half-Heuslers. In addition to a full report included herein, an interactive, online web application has been developed showcasing the results of the analysis and is located at aflow.org/aflow-chull .
Automated computational materials science frameworks rapidly generate large quantities of materials data useful for accelerated materials design. We have extended the data oriented AFLOWrepository API (Application-Program-Interface, as described in Comput. Mater. Sci. 93, 178 (2014)) to enable programmatic access to search queries. A URI-based search API (Uniform Resource Identifier) is proposed for the construction of complex queries with the intent of allowing the remote creation and retrieval of customized data sets. It is expected that the new language AFLUX, acronym for Automatic Flow of LUX (light), will facilitate the creation of remote search operations on the AFLOW.org set of computational materials science data repositories.
Determination of the symmetry profile of structures is a persistent challenge in materials science. Results often vary amongst standard packages, hindering autonomous materials development by requiring continuous user attention and educated guesses. This article presents a robust procedure for evaluating the complete suite of symmetry properties, featuring various representations for the point, factor and space groups, site symmetries and Wyckoff positions. The protocol determines a system-specific mapping tolerance that yields symmetry operations entirely commensurate with fundamental crystallographic principles. The self-consistent tolerance characterizes the effective spatial resolution of the reported atomic positions. The approach is compared with the most used programs and is successfully validated against the space-group information provided for over 54 000 entries in the Inorganic Crystal Structure Database (ICSD). Subsequently, a complete symmetry analysis is applied to all 1.7+ million entries of the AFLOW data repository. The AFLOW-SYM package has been implemented in, and made available for, public use through the automated ab initio framework AFLOW.
Good agreement was found between experimental Vickers hardnesses, Hv, of a wide range of materials and those calculated by three macroscopic hardness models that employ the shear and/or bulk moduli obtained from: (i) first principles via AFLOW-AEL (AFLOW Automatic Elastic Library), and (ii) a machine learning (ML) model trained on materials within the AFLOW repository. Because H ML v values can be quickly estimated, they can be used in conjunction with an evolutionary search to predict stable, superhard materials. This methodology is implemented in the XTALOPT evolutionary algorithm. Each crystal is minimized to the nearest local minimum, and its Vickers hardness is computed via a linear relationship with the shear modulus discovered by Teter. Both the energy/enthalpy and H ML v, Teter are employed to determine a structure's fitness. This implementation is applied towards the carbon system, and 43 new superhard phases are found. A topological analysis reveals that phases estimated to be slightly harder than diamond contain a substantial fraction of diamond and/or lonsdaleite. arXiv:1906.05886v1 [cond-mat.mtrl-sci]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.