Dystroglycan (DG) is part of a multiprotein complex that links the extracellular matrix to the actin cytoskeleton of muscle fibers and that is involved in aggregating acetylcholine receptors at the neuromuscular junction. This complex is also expressed in regions of the central nervous system where it is localized to both neuronal and glial cells. DG and the inwardly rectifying potassium channels, Kir4.1, are concentrated at the interface of astroglia and small blood vessels. These channels are involved in siphoning potassium released into the extracellular space after neuronal excitation. This raises the possibility that DG may be involved in targeting Kir4.1 channels to specific domains of astroglia. To address this question, we used mixed hippocampal cultures to investigate the distribution of DG, syntrophin, dystrobrevin, and Kir4.1 channels, as well as aquaporin-permeable water channels, AQP4. These proteins exhibit a similar distribution pattern and form aggregates in astrocytes cultured on laminin. Both DG and syntrophin colocalize with Kir4.1 channel aggregates in astrocytes. Similarly, DG colocalizes with AQP4 channel aggregates. Quantitative studies show a significant increase of Kir4.1 and AQP4 channel aggregates in astrocytes cultured in the presence of laminin when compared with those in the absence of laminin. These findings show that laminin has a role in Kir4.1 and AQP4 channel aggregation and suggest that this may be mediated via a dystroglycan-containing complex. This study reveals a novel functional role for DG in brain including K+ buffering and water homeostasis.
Inwardly rectifying potassium (Kir) channels in Mü ller glia play a critical role in the spatial buffering of potassium ions that accumulate during retinal activity. To this end, Kir channels show a polarized subcellular distribution with the predominant channel subunit in Mü ller glia, Kir4.1, clustered in the endfeet of these cells at the inner limiting membrane. However, the molecular mechanisms underlying their distribution have yet to be identified. Here, we show that laminin, agrin and a-dystroglycan (DG) codistribute with Kir4.1 at the inner limiting membrane in the retina and that laminin-1 induces the clustering of a-DG, syntrophin and Kir4.1 in Mü ller cell cultures. In addition, we found that a-DG clusters were enriched for agrin and sought to investigate the role of agrin in their formation using recombinant C-agrins. Both C-agrin 4,8 and C-agrin 0,0 failed to induce a-DG clustering and neither of them potentiated the a-DG clustering induced by laminin-1. Finally, our data reveal that deletion of the PDZ-ligand domain of Kir4.1 prevents their laminin-induced clustering. These findings indicate that both laminin-1 and a-DG are involved in the distribution of Kir4.1 to specific Mü ller cell membrane domains and that this process occurs via a PDZ-domain-mediated interaction. Thus, in the basal lamina laminin is an essential regulator involved in clearing excess potassium released during neuronal activity, thereby contributing to the maintenance of normal synaptic transmission in the retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.