In mammalian cardiac cells, a variety of transient or sustained K+ currents contribute to the repolarization of action potentials. There are two main components of the delayed-rectifier sustained K+ current, I(Kr) (rapid) and I(Ks), (slow). I(Kr) is the product of the gene HERG, which is altered in the long-QT syndrome, LQT2. A channel with properties similar to those of the I(Ks) channel is produced when the cardiac protein IsK is expressed in Xenopus oocytes. However, it is a small protein with a very unusual structure for a cation channel. The LQT1 gene is another gene associated with the LQT syndrome, a disorder that causes sudden death from ventricular arrhythmias. Here we report the cloning of the full-length mouse K(V)LQT1 complementary DNA and show that K(V)LQT1 associates with IsK to form the channel underlying the I(Ks) cardiac current, which is a target of class-III anti-arrhythmic drugs and is involved in the LQT1 syndrome.
A new human weakly inward rectifying K+ channel, TWIK‐1, has been isolated. This channel is 336 amino acids long and has four transmembrane domains. Unlike other mammalian K+ channels, it contains two pore‐forming regions called P domains. Genes encoding structural homologues are present in the genome of Caenorhabditis elegans. TWIK‐1 currents expressed in Xenopus oocytes are time‐independent and present a nearly linear I‐V relationship that saturated for depolarizations positive to O mV in the presence of internal Mg2+. This inward rectification is abolished in the absence of internal Mg2+. TWIK‐1 has a unitary conductance of 34 pS and a kinetic behaviour that is dependent on the membrane potential. In the presence of internal Mg2+, the mean open times are 0.3 and 1.9 ms at −80 and +80 mV, respectively. The channel activity is up‐regulated by activation of protein kinase C and down‐regulated by internal acidification. Both types of regulation are indirect. TWIK‐1 channel activity is blocked by Ba2+(IC50=100 microM), quinine (IC50=50 microM) and quinidine (IC50=95 microM). This channel is of particular interest because its mRNA is widely distributed in human tissues, and is particularly abundant in brain and heart. TWIK‐1 channels are probably involved in the control of background K+ membrane conductances.
We report the cloning of a mouse GIRK2 splice variant, noted mGIRK2A. Both channel proteins are functionally expressed in Xenopus oocytes upon injection of their cRNA, alone or in combination with the GIRK1 cRNA. Three GIRK channels, mGIRK1-3, are shown to be present in the brain. Colocalization in the same neurons of mGIRK1 and mGIRK2 supports the hypothesis that native channels are made by an heteromeric subunit assembly. GIRK3 channels have not been expressed successfully, even in the presence of the other types of subunits. However, GIRK3 chimeras with the aminoand carboxyl-terminal of GIRK2 are functionally expressed in the presence of GIRK1. The expressed mGIRK2 and mGIRK1, -2 currents are blocked by Ba 2؉and Cs ؉ ions. They are not regulated by protein kinase A and protein kinase C. Channel activity runs down in inside-out excised patches, and ATP is required to prevent this rundown. Since the nonhydrolyzable ATP analog AMP-PCP is also active and since addition of kinases A and C as well as alkaline phosphatase does not modify the ATP effect, it is concluded that ATP hydrolysis is not required. An ATP binding process appears to be essential for maintaining a functional state of the neuronal inward rectifier K ؉ channel. A Na ؉ binding site on the cytoplasmic face of the membrane acts in synergy with the ATP binding site to stabilize channel activity.
MbIRK3, mbGIRK2 and mbGIRK3 K' channels cDNAs have been cloned from adult mourn brain. These cDNAs encode polypeptides of 445,414 and 376 amino acids, respectively, which display the hallmarks of inward rectifier K+ channels, i.e. two hydrophobic membrane-spanning domains Ml and M2 and a pore-forming domain H5. MbIRK3 shows around 65% amino acid identity with IRK1 and rbIRK2 and only 50% with ROMKl and GIRKl. On the other hand, mbGIRK2 and mbGIRK3 are more similar to GIRKl (60%) than to ROMKl and IRK1 (50%). Northern blot analysis reveals that these three novel clones are mainly expressed in the brain. Xenopus oocytes injected with mbIRK3 and mbGIRK2 cRNAs display inward rectifier K+-selective currents very similar to IRK1 and GIRKl , respectively. As expected from the sequence homology, mbGIRK2 cRNA directs the expression of G-protein coupled inward rectityer K' channels which has been observed through their functional coupling with 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.