Dengue virus (DENV) causes the major arboviral disease of the tropics, characterized in its severe forms by signs of hemorrhage and plasma leakage. DENV encodes a nonstructural glycoprotein, NS1, that associates with intracellular membranes and the cell surface. NS1 is eventually secreted as a soluble hexamer from DENV-infected cells and circulates in the bloodstream of infected patients. Extracellular NS1 has been shown to modulate the complement system and to enhance DENV infection, yet its structure and function remain essentially unknown. By combining cryoelectron microscopy analysis with a characterization of NS1 amphipathic properties, we show that the secreted NS1 hexamer forms a lipoprotein particle with an open-barrel protein shell and a prominent central channel rich in lipids. Biochemical and NMR analyses of the NS1 lipid cargo reveal the presence of triglycerides, bound at an equimolar ratio to the NS1 protomer, as well as cholesteryl esters and phospholipids, a composition evocative of the plasma lipoproteins involved in vascular homeostasis. This study suggests that DENV NS1, by mimicking or hijacking lipid metabolic pathways, contributes to endothelium dysfunction, a key feature of severe dengue disease.arbovirus | dengue hemorrhagic fever | amphiphilic proteins | secretion
Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep integral membrane proteins (MPs) water soluble. In this review, we discuss their structure and solution behavior; the way they associate with MPs; and the structure, dynamics, and solution properties of the resulting complexes. All MPs tested to date form water-soluble complexes with APols, and their biochemical stability is in general greatly improved compared with MPs in detergent solutions. The functionality and ligand-binding properties of APol-trapped MPs are reviewed, and the mechanisms by which APols stabilize MPs are discussed. Applications of APols include MP folding and cell-free synthesis, structural studies by NMR, electron microscopy and X-ray diffraction, APol-mediated immobilization of MPs onto solid supports, proteomics, delivery of MPs to preexisting membranes, and vaccine formulation.
We report here a five-step purification procedure that led to the isolation from fetal calf bone marrow extract of a tetrapeptide, Ac-Ser-Asp-Lys-Pro (Mr 487), exerting a high inhibitory activity on the proliferation of hematopoietic pluripotent stem cells [defined here as spleen colony-forming units (CFU-S)]. The structure of this molecule was established from amino acid analysis, fast atom bombardment mass spectrometry, and 1H nuclear magnetic resonance spectral data. This structure was confirmed by comparison with the corresponding synthetic molecule, which presents identical physiochemical characteristics and biological properties. Natural and synthetic peptides administered to mice (at a dose of 100 ng per mouse) after one injection of cytosine arabinonucleoside prevent CFU-S recruitment into DNA synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.