The accumulation of hydrophobic bile acids plays a role in the induction of apoptosis and necrosis of hepatocytes during cholestasis. The aim of this study was to determine in freshly isolated rat hepatocytes the roles of oxidant stress and the mitochondrial permeability transition (MPT) in bile acid-induced apoptosis. Hepatocytes isolated from adult male Sprague-Dawley rats were incubated for 4 hours in buffer containing the hydrophobic bile acid, glycochenodeoxycholic acid (GCDC, 0-500 mol/L) or the hydrophilic bile acid, glycocholic acid (GCA), and either the antioxidants, alpha tocopherol, ebselen, or idebenone (a coenzyme Q analogue); or the MPT blockers, cyclosporin A, or bongkrekic acid, or a caspase-8 inhibitor.
Hydrophobic bile acids may cause hepatocellular necrosis and apoptosis during cholestatic liver diseases. The mechanism for this injury may involve mitochondrial dysfunction and the generation of oxidant stress. The purpose of this study was to determine the relationship of oxidant stress and the mitochondrial membrane permeability transition (MMPT) in hepatocyte necrosis induced by bile acids. The MMPT was measured spectrophotometrically and morphologically in rat liver mitochondria exposed to glycochenodeoxycholic acid (GCDC). Freshly isolated rat hepatocytes were exposed to GCDC and hepatocellular necrosis was assessed by lactate dehydrogenase release, hydroperoxide generation by dichlorofluorescein fluorescence, and the MMPT in cells by JC1 and tetramethylrhodamine methylester fluorescence on flow cytometry. GCDC induced the MMPT in a dose-and Ca 2ϩ -dependent manner. Antioxidants significantly inhibited the GCDC-induced MMPT and the generation of hydroperoxides in isolated mitochondria. Other detergents failed to induce the MMPT and a calpain-like protease inhibitor had no effect on the GCDC-induced MMPT. In isolated rat hepatocytes, GCDC induced the MMPT, which was inhibited by antioxidants. Blocking the MMPT in hepatocytes reduced hepatocyte necrosis and oxidant stress caused by GCDC. Oxidant stress, and not detergent effects or the stimulation of calpain-like proteases, mediates the GCDC-induced MMPT in hepatocytes. We propose that reducing mitochondrial generation of reactive oxygen species or preventing increases in mitochondrial Ca 2ϩ may protect the hepatocyte against bile acid-induced necrosis. 1-3). Although hydrophobic bile acids cause injury to isolated hepatocytes (4), cultured hepatocytes (5), and the intact liver (6), the mechanisms of this toxicity are not fully understood. Both hepatocellular necrosis at higher bile acid concentrations (4) and apoptosis at lower concentrations (7) have been demonstrated and are proposed as playing a role in cholestatic liver injury. Hepatocyte necrosis is characterized by cellular swelling, loss of mitochondrial respiratory function, depleted cellular ATP levels, and formation of plasma membrane blebs that rupture and release cellular contents (8, 9). In cholestatic liver ABSTRACT519
The accumulation of hydrophobic bile acids results in cholestatic liver injury by increasing oxidative stress, mitochondrial dysfunction, and activation of cell signaling pathways. Licorice root and its constituents have been utilized as antihepatotoxic agents. The purpose of this study was to evaluate the potential modulation by a primary component of licorice root, glycyrrhizin (GL), and its metabolite, 18-glycyrrhetinic acid (GA), in a hepatocyte model of cholestatic liver injury. Preincubation of fresh rat hepatocyte suspensions with GL or GA reduced glycochenodeoxycholic acid (GCDC)-dependent reactive oxygen species generation, with GA more potent than GL. Interestingly, GL and GA had opposing effects toward GCDC-induced cytotoxicity; GA prevented both necrosis and apoptosis, whereas GL enhanced apoptosis. GCDC promoted activation of caspase 10, caspase 3, and PARP; all were inhibited by GA but not GL. Induction of apoptosis by GCDC was also associated with activation of JNK, which was prevented by GA. Activation of caspase 9 and dissipation of mitochondrial membrane potential were prevented by GA but not GL. In liver mitochondrial studies, GL and GA were both potent inhibitors of the mitochondrial permeability transition, reactive oxygen species generation, and cytochrome c release at submicromolar concentrations. Results from this study suggest that GL exhibits proapoptotic properties, whereas GA is a potent inhibitor of bile acid-induced apoptosis and necrosis in a manner consistent with its antioxidative effect.
Mitochondrial pathways of cell death are stimulated in human hepatic mitochondria exposed to GCDC consistent with the role of mitochondrial dysfunction in the pathogenesis of cholestatic liver injury. These results parallel those reported in rodents, supporting the extrapolation of mechanistic studies of bile acid toxicity from rodent to humans.
Short-Term protein-pacing (P; ~6 meals/day, >30% protein/day) and caloric restriction (CR, ~25% energy deficit) improves total (TBF), abdominal (ABF) and visceral (VAT) fat loss, energy expenditure, and biomarkers compared to heart healthy (HH) recommendations (3 meals/day, 15% protein/day) in obese adults. Less is known whether obese men and women respond similarly to P-CR during weight loss (WL) and whether a modified P-CR (mP-CR) is more efficacious than a HH diet during long-term (52 week) weight maintenance (WM). The purposes of this study were to evaluate the efficacy of: (1) P-CR on TBF, ABF, resting metabolic rate (RMR), and biomarkers between obese men and women during WL (weeks 0–12); and (2) mP-CR compared to a HH diet during WM (weeks 13–64). During WL, men (n = 21) and women (n = 19) were assessed for TBF, ABF, VAT, RMR, and biomarkers at weeks 0 (pre) and 12 (post). Men and women had similar reductions (p < 0.01) in weight (10%), TBF (19%), ABF (25%), VAT (33%), glucose (7%–12%), insulin (40%), leptin (>50%) and increase in % lean body mass (9%). RMR (kcals/kg bodyweight) was unchanged and respiratory quotient decreased 9%. Twenty-four subjects (mP-CR, n = 10; HH, n = 14) completed WM. mP-CR regained significantly less body weight (6%), TBF (12%), and ABF (17%) compared to HH (p < 0.05). Our results demonstrate P-CR enhances weight loss, body composition and biomarkers, and maintains these changes for 52-weeks compared to a traditional HH diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.