Immune checkpoint blockade, exemplified by antibodies targeting the PD-1 receptor, can induce durable tumor regressions in some patients. To enhance the efficacy of existing immunotherapies, we screened for small molecules capable of increasing the activity of T cells suppressed by PD-1. Here, we show that short-term exposure to small-molecule inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) significantly enhances T-cell activation, contributing to antitumor effects , due in part to the derepression of NFAT family proteins and their target genes, critical regulators of T-cell function. Although CDK4/6 inhibitors decrease T-cell proliferation, they increase tumor infiltration and activation of effector T cells. Moreover, CDK4/6 inhibition augments the response to PD-1 blockade in a novel organotypic tumor spheroid culture system and in multiple murine syngeneic models, thereby providing a rationale for combining CDK4/6 inhibitors and immunotherapies. Our results define previously unrecognized immunomodulatory functions of CDK4/6 and suggest that combining CDK4/6 inhibitors with immune checkpoint blockade may increase treatment efficacy in patients. Furthermore, our study highlights the critical importance of identifying complementary strategies to improve the efficacy of immunotherapy for patients with cancer. .
CDK4 is emerging as a target in KRAS-mutant non-small cell lung cancer (NSCLC). We demonstrate that KRAS-mutant NSCLC cell lines are initially sensitive to the CDK4/6 inhibitor palbociclib, but readily acquire resistance associated with increased expression of CDK6, D-type cyclins and cyclin E. Resistant cells also demonstrated increased ERK1/2 activity and sensitivity to MEK and ERK inhibitors. Moreover, MEK inhibition reduced the expression and activity of cell cycle proteins mediating palbociclib resistance. In resistant cells, ERK activated mTOR, driven in part by upstream FGFR1 signaling resulting from the extracellular secretion of FGF ligands. A genetically-engineered mouse model of KRAS-mutant NSCLC initially sensitive to palbociclib similarly developed acquired resistance with increased expression of cell cycle mediators, ERK1/2 and FGFR1. In this model, resistance was delayed with combined palbociclib and MEK inhibitor treatment. These findings implicate an FGFR1–MAP kinase–mTOR pathway resulting in increased expression of D-cyclins and CDK6 that confers palbociclib resistance and indicate that CDK4/6 inhibition acts to promote MAP kinase dependence.
Both the transforming growth factor- (TGF)/Smad and the prolactin/JAK/STAT pathway are critical to the proper development, maintenance, and function of the mammary epithelial tissue. Interestingly, opposing physiological effects between these two signaling pathways are prominent in the regulation of mammary gland development. However, the exact nature of the biological network existing between the Smad and STAT signal transduction pathways has remained elusive. We identified a novel regulatory cross-talk mechanism by which TGF-induced Smad signaling acts to antagonize prolactin-mediated JAK/ STAT signaling and expression of target genes. Furthermore, we found activin, another member of the TGF family, to also efficiently block STAT5 signaling and -casein expression in mammary epithelial cells. Our results indicate that ligand-induced activation of Smad2, -3, and -4 by activin and TGF leads to a direct inhibition of STAT5 transactivation and STAT5-mediated transcription of the downstream target genes, -casein and cyclin D1, thereby blocking vital processes for mammary gland growth and differentiation. Finally, we unveiled the mechanism by which these two signaling cascades antagonize their effects, and we found that activated Smads inhibit STAT5 association with its co-activator CREB-binding protein, thus blocking STAT5 transactivation of its target genes and leading to inhibition of mammary gland differentiation and lactation.Mammary gland growth and differentiation are complex processes regulated by steroids, polypeptide hormones, and growth factors. Among them, prolactin and TGF 5 family members play a major role in the regulation of mammary gland development. Prolactin is required for lobuloalveolar formation and functional differentiation of mammary epithelial cells.TGF has an opposite effect, inducing apoptosis during mammary gland involution and inhibiting expression of the milk proteins (1, 2). TGF is expressed and plays critical roles in every phase of post-natal mammary gland development (3). TGF has been shown to inhibit alveolar formation and synthesis of milk proteins and to induce apoptosis during involution of the mammary gland (4 -6). Together, these data suggest that TGF would antagonize prolactin (PRL)-induced signals in mammary cells (7,8). The effect of activin, another member of the TGF family, on the development of the mammary gland stems from the activin b subunit knock-out mouse model. Deletion of the activin b subunit, through ablation of three of the dimeric  molecules (activin B, activin AB, and inhibin B), results in mice with the phenotype of incomplete mammary development and an absence of lactation, suggesting that activin/inhibin may play an important role in this process (9). In summary, although TGF and activin clearly play important roles in mammary gland development, their mechanism of action in mammary epithelial functional differentiation has yet to be fully elucidated.Prolactin signal transduction is induced by formation of a homodimeric complex of two molec...
BackgroundIn contrast to immune checkpoint inhibitors, the use of antibodies as agonists of immune costimulatory receptors as cancer therapeutics has largely failed. We sought to address this problem using a new class of modular synthetic drugs, termed tumor-targeted immune cell agonists (TICAs), based on constrained bicyclic peptides (Bicycles).MethodsPhage libraries displaying Bicycles were panned for binders against tumor necrosis factor (TNF) superfamily receptors CD137 and OX40, and tumor antigens EphA2, Nectin-4 and programmed death ligand 1. The CD137 and OX40 Bicycles were chemically conjugated to tumor antigen Bicycles with different linkers and stoichiometric ratios of binders to obtain a library of low molecular weight TICAs (MW <8 kDa). The TICAs were evaluated in a suite of in vitro and in vivo assays to characterize their pharmacology and mechanism of action.ResultsLinking Bicycles against costimulatory receptors (e.g., CD137) to Bicycles against tumor antigens (e.g., EphA2) created potent agonists that activated the receptors selectively in the presence of tumor cells expressing these antigens. An EphA2/CD137 TICA (BCY12491) efficiently costimulated human peripheral blood mononuclear cells in vitro in the presence of EphA2 expressing tumor cell lines as measured by the increased secretion of interferon γ and interleukin-2. Treatment of C57/Bl6 mice transgenic for the human CD137 extracellular domain (huCD137) bearing EphA2-expressing MC38 tumors with BCY12491 resulted in the infiltration of CD8+ T cells, elimination of tumors and generation of immunological memory. BCY12491 was cleared quickly from the circulation (plasma t1/2 in mice of 1–2 hr), yet intermittent dosing proved effective.ConclusionTumor target-dependent CD137 agonism using a novel chemical approach (TICAs) afforded elimination of tumors with only intermittent dosing suggesting potential for a wide therapeutic index in humans. This work unlocks a new path to effective cancer immunotherapy via agonism of TNF superfamily receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.