The intercellular adhesion molecule CEACAM1, also known as C-CAM1 (where CAM is cell-adhesion molecule), can function as a tumour suppressor in several carcinomas, including those of the prostate, breast, bladder and colon. This suggests that CEACAM1 may play an important role in the regulation of normal cell growth and differentiation. However, there is no direct evidence to support this putative function of CEACAM1. To elucidate its physiological function by targeted gene deletion, we isolated the Ceacam genes from a mouse 129 Sv/Ev library. Although there is only one Ceacam1 gene in humans and one in rats, two homologous genes (Ceacam1 and Ceacam2) have been identified in the mouse. Our sequence analysis revealed that the genes encoded nine exons and spanned approx. 16-17 kb (Ceacam1) and 25 kb (Ceacam2). The genes were highly similar (79.6%). The major differences in the protein-coding regions were located in exons 2, 5 and 6 (76.9%, 87.0% and 78.5% similarity respectively). In addition, introns 2, 5 and 7 were also significantly different, being 29.7%, 59.8% and 64.5% similar respectively. While most of these differences were due to nucleotide substitutions, two insertions of 418 and 5849 bp occurred in intron 2 of Ceacam2, and another two insertions of 1384 and 197 bp occurred in introns 5 and 7 respectively. To determine whether functional redundancy exists between Ceacam1 and Ceacam2, we examined their expression in 16 mouse tissues by using semi-quantitative reverse transcription-PCR. As in human and rat, in the mouse Ceacam1 mRNA was highly abundant in the liver, small intestine, prostate and spleen. In contrast, Ceacam2 mRNA was only detected in kidney, testis and, to a lesser extent, spleen. Reverse transcription-PCR using testis RNA indicated that Ceacam2 in the testis is an alternatively spliced form containing only exons 1, 2, 5, 6, 8 and 9. In the mouse embryo, Ceacam1 mRNA was detected at day 8.5, disappeared between days 9.5 and 12.5, and re-appeared at day 19. On the other hand, no Ceacam2 mRNA was detected throughout embryonic development. The different tissue expression patterns and regulation during embryonic development suggest that the CEACAM1 and CEACAM2 proteins, although highly similar, may have different functions both during mouse development and in adulthood.
The intercellular adhesion molecule CEACAM1, also known as C-CAM1 (where CAM is cell-adhesion molecule), can function as a tumour suppressor in several carcinomas, including those of the prostate, breast, bladder and colon. This suggests that CEACAM1 may play an important role in the regulation of normal cell growth and differentiation. However, there is no direct evidence to support this putative function of CEACAM1. To elucidate its physiological function by targeted gene deletion, we isolated the Ceacam genes from a mouse 129 Sv/Ev library. Although there is only one Ceacam1 gene in humans and one in rats, two homologous genes (Ceacam1 and Ceacam2) have been identified in the mouse. Our sequence analysis revealed that the genes encoded nine exons and spanned approx. 16-17 kb (Ceacam1) and 25kb (Ceacam2). The genes were highly similar (79.6%). The major differences in the protein-coding regions were located in exons 2, 5 and 6 (76.9%, 87.0% and 78.5% similarity respectively). In addition, introns 2, 5 and 7 were also significantly different, being 29.7%, 59.8% and 64.5% similar respectively. While most of these differences were due to nucleotide substitutions, two insertions of 418 and 5849bp occurred in intron 2 of Ceacam2, and another two insertions of 1384 and 197bp occurred in introns 5 and 7 respectively. To determine whether functional redundancy exists between Ceacam1 and Ceacam2, we examined their expression in 16 mouse tissues by using semi-quantitative reverse transcription-PCR. As in human and rat, in the mouse Ceacam1 mRNA was highly abundant in the liver, small intestine, prostate and spleen. In contrast, Ceacam2 mRNA was only detected in kidney, testis and, to a lesser extent, spleen. Reverse transcription-PCR using testis RNA indicated that Ceacam2 in the testis is an alternatively spliced form containing only exons 1, 2, 5, 6, 8 and 9. In the mouse embryo, Ceacam1 mRNA was detected at day 8.5, disappeared between days 9.5 and 12.5, and re-appeared at day 19. On the other hand, no Ceacam2 mRNA was detected throughout embryonic development. The different tissue expression patterns and regulation during embryonic development suggest that the CEACAM1 and CEACAM2 proteins, although highly similar, may have different functions both during mouse development and in adulthood. The Ceacam1 and Ceacam2 sequences have been deposited in the GenBank®/EMBL/DDBJ/GSDB Nucleotide Sequence Databases with accession numbers AF287911 and AF287912 respectively.
BACKGROUND:The purposes of this study were to address a persistent controversy as to whether the ER status of a primary tumor remains stable during progression to metastasis and to evaluate the influence of disease course and prior systemic therapy on ER status. METHODS: Breast carcinomas from 227 women with known ER status in both primary tumor and paired metastasis were retrospectively reviewed. ER status was compared between primary and metastatic tumors with respect to metastatic site, interval between two ER assays, and intervening chemotherapy and endocrine therapy. Semiquantitative comparison of ER values was performed for 92 tumor pairs. RESULTS: ER status agreed in 210 (92.5%) patients, including 147 positive and 63 negative. Of the 17 patients (7.5%) with discordant ER status, both negative to positive conversion (n ¼ 7) and positive to negative conversion (n ¼ 10) were observed. ER discordance was not significantly associated with metastatic site (locoregional vs distant), time interval between assays (<5 years vs. 5 years), or intervening chemotherapy and endocrine therapy. Semiquantitative levels of ER expression were similar between primary and metastatic tumors. In discordant cases, variations in testing methods and marginal scores were common. CONCLUSIONS: ER status in breast carcinoma is generally stable during progression to metastasis. Preanalytical and analytical variability may contribute to discordance in some cases. Given the importance of ER status for clinical management, ER testing in metastatic breast carcinoma should be repeated, especially for patients whose clinical courses are not compatible with stated ER status. Cancer 2011;117:705-13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.