We investigate the influence of magnetic fields upon the dynamics of, and resulting gravitational waves from, a binary neutron-star merger in full general relativity coupled to ideal magnetohydrodynamics. We consider two merger scenarios: one where the stars have aligned poloidal magnetic fields and one without. Both mergers result in a strongly differentially rotating object. In comparison to the nonmagnetized scenario, the aligned magnetic fields delay the full merger of the stars. During and after merger we observe phenomena driven by the magnetic field, including Kelvin-Helmholtz instabilities in shear layers, winding of the field lines, and transition from poloidal to toroidal magnetic fields. These effects not only mediate the production of electromagnetic radiation, but also can have a strong influence on the gravitational waves. Thus, there are promising prospects for studying such systems with both types of waves.
We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship, and head-on black hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.
Abstract. This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3 + 1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the ∇ · B = 0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.
We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equations are solved in a first order reduction of the generalized harmonic formulation, and the fluid equations are solved using a modified convex essentially non-oscillatory method. All calculations are done in three spatial dimensions without symmetry assumptions. We use the had computational infrastructure for distributed adaptive mesh refinement.
We present the results from a numerical study of critical gravitational collapse of axisymmetric distributions of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric critical solution with axisymmetric perturbations. However, we see indications of a growing, nonspherical mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric self-similar solution. The existence of a nonspherical unstable mode is in conflict with previous perturbative results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead seeing a marginally stable mode that is rendered unstable by numerical approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.