Similar to many large river valleys globally, the Sacramento River Valley has been extensively drained and leveed, hydrologically divorcing river channels from most floodplains. Today, the former floodplain is extensively managed for agriculture. Lack of access to inundated floodplains is recognized as a significant contributing factor in the decline of native Chinook Salmon (Oncorhynchus tshawytscha). We observed differences in salmon growth rate, invertebrate density, and carbon source in food webs from three aquatic habitat types-leveed river channels, perennial drainage canals in the floodplain, and agricultural floodplain wetlands. Over 23 days (17 February to 11 March, 2016) food web structure and juvenile Chinook Salmon growth rates were studied within the three aquatic habitat types. Zooplankton densities on the floodplain wetland were 53x more abundant, on average, than in the river. Juvenile Chinook Salmon raised on the floodplain wetland grew at 0.92 mm/day, 5x faster than fish raised in the adjacent river habitat (0.18 mm/day). Two aquatic-ecosystem modeling methods were used to partition the sources of carbon (detrital or photosynthetic) within the different habitats. Both modeling approaches found that carbon in the floodplain wetland food web was sourced primarily from detrital sources through heterotrophic pathways, while carbon in the river was primarily photosynthetic and sourced from in situ autotrophic production. Hydrologic conditions typifying the ephemerally inundated floodplain-shallower depths, warmer water, longer water residence times and predominantly detrital carbon sources compared to deeper, colder, swifter water and a predominantly algal-based carbon source in the adjacent river channel-appear to facilitate the dramatically higher rates of food web production observed in the floodplain. These results suggest that hydrologic patterns associated with seasonal flooding facilitate river food webs to access floodplain carbon sources that contribute to highly productive heterotrophic energy pathways important to the production of fisheries resources.
Detritus is a central feature in marine, freshwater, and terrestrial ecosystems. Despite the ubiquity of detritus, ecologists have largely ignored its role in influencing food web structure. We used a meta‐analytic approach to ask three questions about how detritus affects food web structure in a wide variety of ecosystems. First, what is the effect strength of detritus on primary producers, detritivores, herbivores, and predators? Second, what functional role does detritus serve for consumers (energetic, habitat, or both)? Third, how does the effect of detritus on consumers vary between aquatic and terrestrial ecosystems? We found that detritus has strong positive effects on primary producers and consumers in a wide range of ecosystems types. Detritus has a positive direct effect on detritivores by providing both an energetic resource and habitat (refuge from predators). Detritus has equally strong positive effects on herbivores and predators, driven by a positive direct effect of habitat. Detritus has positive effects on consumers in both aquatic and terrestrial ecosystems with 1.7 times stronger effects in terrestrial ecosystems. These results suggest that detritus has strong effects on food‐web structure in a variety of ecosystem types. Even the portion of the food web that is linked most strongly to living plant tissue as its primary energy source is strongly positively affected.
Maximum water temperatures in streams throughout the western USA typically occur in late summer and early autumn, coinciding with low stream flow. However, in the spring-fed Big Springs Creek in northern California, where constant-temperature groundwater springs provide relatively stable stream flow throughout the year, peak water temperatures and maximum diurnal variability occur in spring. We attribute this anomaly to the riverine canopy provided by emergent aquatic macrophytes (e.g., Polygonum hydropiperoides and Nasturtium officinale), which mimics the shade function of a riparian canopy. Macrophyte biomass increased 264% between January and August 2011. This increase coincided with a 111% reduction in flow velocity and a 53% increase in stream depth. Solar radiation was reduced by an average of 88% in patches of macrophytes that covered~50% of the water surface during the summer. Decreased solar radiation reduced rates of stream heating, maximum temperatures, and temperature variability. We tested the riverine canopy hypothesis analytically based on a 2-dimensional hydrodynamic and water-temperature model. The model predicted that emergent aquatic macrophytes reduce maximum water temperatures by an average of 5.17C (p < 0.001) during late summer, when water temperatures in northern California streams typically increase. Our study shows the influence of a riverine canopy on naturally occurring temporal patterns of water temperature in a spring-fed stream. Our results could inform basin-scale management or regulatory strategies to address water-temperature conditions.
Population growth and increasing water-use pressures threaten California's freshwater ecosystems and have led many native fishes to the brink of extinction. To guide fish conservation efforts, we provide the first systematic prioritization of river catchments and identify those that disproportionately contribute to fish taxonomic diversity. Using high-resolution range maps of exceptional quality, we also assess the representation of fish taxa within the state's protected areas and examine the concordance of high-priority catchments with existing reserves and among distinct taxonomic groups. Although most of the state's native fishes are found within protected areas, only a small proportion of their ranges are represented. Few high-priority catchments occur within protected areas, suggesting that fish conservation will require active management and targeted river restoration outside of reserves. These results provide the foundation for systematic freshwater conservation planning in California and for prioritizing where limited resources are allocated for fish recovery and protection.
Rearing habitat for juvenile Chinook Salmon (Oncorhynchus tshawytscha) in California, the southernmost portion of their range, has drastically declined throughout the past century. Recently, through cooperative agreements with diverse stakeholders, winter-flooded agricultural rice fields in California’s Central Valley have emerged as ecologically functioning floodplain rearing habitat for juvenile Chinook Salmon. From 2013 to 2016, we conducted a series of experiments examining methods to enhance habitat benefits for fall-run Chinook Salmon reared on winter-flooded rice fields in the Yolo Bypass, a modified floodplain managed for flood control, agriculture, and wildlife habitat in the Sacramento River Valley of California. Investigations included studying the effect of 1) post-harvest field substrate; 2) depth refugia; 3) duration of field drainage; and 4) duration of rearing occupancy on in-situ diet, growth and survival of juvenile salmon. Post-harvest substrate treatment had only a small effect on the lower trophic food web and an insignificant effect on growth rates or survival of rearing hatchery-origin, fall-run Chinook Salmon. Similarly, depth refugia, created by trenches dug to various depths, also had an insignificant effect on survival. Rapid field drainage yielded significantly higher survival compared to drainage methods drawn out over longer periods. A mortality of approximately one third was observed in the first week after fish were released in the floodplain. This initial mortality event was followed by high, stable survival rates for the remainder of the 6-week duration of floodplain rearing study. Across years, in-field survival ranged 7.4–61.6% and increased over the course of the experiments. Despite coinciding with the most extreme drought in California’s recorded history, which elevated water temperatures and reduced the regional extent of adjacent flooded habitats which concentrated avian predators, the adaptive research framework enabled incremental improvements in design to increase survival. Zooplankton (fish food) in the winter-flooded rice fields were 53-150x more abundant than those sampled concurrently in the adjacent Sacramento River channel. Correspondingly, observed somatic growth rates of juvenile hatchery-sourced fall-run Chinook Salmon stocked in rice fields were two to five times greater than concurrently and previously observed growth rates in the adjacent Sacramento River. The abundance of food resources and exceptionally high growth rates observed during these experiments illustrate the potential benefits of using existing agricultural infrastructure to approximate the floodplain wetland physical conditions and hydrologic patterns (shallow, long-duration inundation of cool floodplain habitats in mid-winter) under which Chinook Salmon evolved and to which they are adapted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.