Chromatin is a highly regulated nucleoprotein complex through which genetic material is structured and maneuvered to elicit cellular processes, including transcription, cell division, differentiation, and DNA repair. In eukaryotes, the core of this structure is composed of nucleosomes, or repetitive histone octamer units typically enfolded by 147 base pairs of DNA. DNA is arranged and indexed through these nucleosomal structures to adjust local chromatin compaction and accessibility. Histones are subject to multiple covalent posttranslational modifications, some of which alter intrinsic chromatin properties, others of which present or hinder binding modules for non-histone, chromatin-modifying complexes. Although certain histone marks correlate with different biological outputs, we have yet to fully appreciate their effects on transcription and other cellular processes. Tremendous advancements over the past years have uncovered intriguing histone-related matters and raised important related questions. This review revisits past breakthroughs and discusses novel developments that pertain to histone posttranslational modifications and the affects they have on transcription and DNA packaging.
The mechanism by which newly synthesized histones are imported into the nucleus and deposited onto replicating chromatin alongside segregating nucleosomal counterparts is poorly understood, yet this program is expected to bear on the putative epigenetic nature of histone posttranslational modifications. In order to define the events by which naïve pre-deposition histones are imported into the nucleus, we biochemically purified and characterized the gamut of histone H3.1-containing complexes from human cytoplasmic fractions and identified their associated histone PTMs. Through reconstitution assays, biophysical analyses, and live cell manipulations, we describe in detail this series of events, namely the assembly of H3-H4 dimers, the acetylation of histones by the HAT1 holoenzyme, and the transfer of histones between chaperones that culminates with their karyopherin-mediated nuclear import. We further demonstrate the high degree of conservation for this pathway between higher and lower eukaryotes.
Small-molecule BET inhibitors interfere with the epigenetic interactions between acetylated histones and the bromodomains of the BET family proteins, including BRD4, and they potently inhibit growth of malignant cells by targeting cancer-promoting genes. BRD4 interacts with the pause-release factor P-TEFb, and has been proposed to release Pol II from promoter-proximal pausing. We show that BRD4 occupied widespread genomic regions in mouse cells, and directly stimulated elongation of both protein-coding transcripts and non-coding enhancer RNAs (eRNAs), dependent on the function of bromodomains. BRD4 interacted physically with elongating Pol II complexes, and assisted Pol II progression through hyper-acetylated nucleosomes by interacting with acetylated histones via bromodomains. On active enhancers, the BET inhibitor JQ1 antagonized BRD4-associated eRNA synthesis. Thus, BRD4 is involved in multiple steps of the transcription hierarchy, primarily by assisting transcript elongation both at enhancers and on gene bodies.
Melanoma is one of the most aggressive cancers affecting humans. Although early melanomas are curable with surgical excision, metastatic melanomas are associated with high mortality. The mechanism of melanoma development, progression, and metastasis is largely unknown. In order to uncover genes unique to melanoma cells, we used high-density DNA microarrays to examine the gene expression profiles of metastatic melanoma nodules using benign nevi as controls. Over 190 genes were significantly overexpressed in metastatic melanomas compared with normal nevi by at least 2-fold. One of the most abundantly expressed genes in metastatic melanoma nodules is osteopontin (OPN). Immunohistochemistry staining on tissue microarrays and individual skin biopsies representing different stages of melanoma progression revealed that OPN expression is first acquired at the step of melanoma tissue invasion. In addition, blocking of OPN expression by RNA interference reduced melanoma cell numbers in vitro. Our observations suggest that OPN may be acquired early in melanoma development and progression, and may enhance tumor cell growth in invasive melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.