Little is known about emissions and exposure potential from vat polymerization additive manufacturing, a process that uses light-activated polymerization of a resin to build an object. Five vat polymerization printers (three stereolithography (SLA) and two digital light processing (DLP) were evaluated individually in a 12.85 m 3 chamber. Aerosols (number, size) and total volatile organic compounds (TVOC) were measured using real-time monitors. Carbonyl vapors and particulate matter were collected for offline analysis using impingers and filters, respectively. During printing, particle emission yields (#/g printed) ranged from 1.3 ± 0.3 to 2.8 ± 2.6 × 10 8 (SLA printers) and from 3.3 ± 1.5 to 9.2 ± 3.0 × 10 8 (DLP printers). Yields for number of particles with sizes 5.6 to 560 nm (#/g printed) were 0.8 ± 0.1 to 2.1 ± 0.9 × 10 10 and from 1.1 ± 0.3 to 4.0 ± 1.2 × 10 10 for SLA and DLP printers, respectively. TVOC yield values (μg/g printed) ranged from 161 ± 47 to 322 ± 229 (SLA printers) and from 1281 ± 313 to 1931 ± 234 (DLP printers). Geometric mean mobility particle sizes were 41.1-45.1 nm for SLA printers and 15.3-28.8 nm for DLP printers. Mean particle and TVOC yields were statistically significantly higher and mean particle sizes were significantly smaller for DLP printers compared with SLA printers (p < 0.05). Energy dispersive X-ray analysis of individual particles qualitatively identified potential occupational carcinogens (chromium, nickel) as well as reactive metals implicated in generation of reactive oxygen species (iron, zinc). Lung deposition modeling indicates that about 15-37% of emitted particles would deposit in the pulmonary region (alveoli). Benzaldehyde (1.0-2.3 ppb) and acetone (0.7-18.0 ppb) were quantified in emissions from four of the printers and 4-oxopentanal (0.07 ppb) was detectable in the emissions from one printer. Vat polymerization printers emitted nanoscale particles that contained potential carcinogens, sensitizers, and reactive metals as well as CONTACT A. B. Stefaniak,
A major area of growth for "nano-enabled" consumer products have been surface coatings, including paints stains and sealants. Ceria (CeO) nanoparticles (NPs) are of interest as they have been used as additives in these these products to increase UV resistance. Currently, there is a lack of detailed information on the potential release, and speciation (i.e., ion vs. particle) of CeO NPs used in consumer-available surface coatings during intended use scenarios. In this study, both Micronized-Copper Azole pressure-treated lumber (MCA), and a commercially available composite decking were coated with CeO NPs dispersed in Milli-Q water or wood stain. Coated surfaces were divided into two groups. The first was placed outdoors to undergo environmental weathering, while the second was placed indoors to act as experimental controls. Both weathered surfaces and controls were sampled over a period of 6months via simulated dermal contact using methods developed by the Consumer Product Safety Commission (CPSC). The size and speciation of material released was determined through sequential filtration, total metals analysis, X-Ray Absorption Fine Structure Spectroscopy, and electron microscopy. The total ceria release from MCA coated surfaces was found to be dependent on dispersion matrix with aqueous applications releasing greater quantities of CeO than stain based applications, 66±12mg/m and 36±7mg/m, respectively. Additionally, a substantial quantity of CeO was reduced to Ce(III), present as Ce(III)-organic complexes, over the 6-month experimental period in aqueous based applications.
The mobility and dietary preferences of now‐extinct proboscideans have not been comprehensively examined in the central USA. We used stable carbon (δ13C), oxygen (δ18O) and strontium (87Sr/86Sr) isotopic signatures in molar enamel to investigate the foraging ecology of four mastodons (Mammut americanum) and eight mammoths (Mammuthus spp.) from southwestern Ohio and northwestern Kentucky. We tested two hypotheses: (i) these individuals were nomadic migrants that were passing through the region when they died; and (ii) mammoths and mastodons foraged in different environments. Unexpectedly, our results suggest that 11 of the 12 sampled individuals were regional residents. With the exception of one mastodon, 87Sr/86Sr ratios for proboscideans and regional water samples were statistically indistinguishable; slightly lower ratios for waters suggest glacial loess has an impact on modern samples. Amongst the individuals identified as residents, 87Sr/86Sr ratios indicate that mammoths and mastodons foraged in discrete geographical areas, and δ13C values imply dietary differences between the genera, which is consistent with our expectations. Oxygen isotope values may be able to distinguish animals that lived during the Last Glacial Maximum (LGM) from those that lived more recently. Three mammoths and one mastodon yielded δ18O values that are similar to modern regional precipitation and surface water, but too high for estimated drinking water during the LGM. We propose that these individuals lived during a relatively warm period following the LGM. Compellingly, the mammoth with the highest δ18O value also has the lowest δ13C value, suggesting that this individual was alive after regional vegetation shifted from open parkland to deciduous forest dominated by C3 species. Our results demonstrate that a wealth of information can be gleaned from fossil museum specimens and lay a foundation for future work on the foraging ecology of proboscideans and other extinct megafauna from the Midwest USA.
A major area of growth for "nano-enabled" products has been the addition of nanoparticles (NPs) to surface coatings including paints, stains and sealants. Zinc oxide (ZnO) NPs, long used in sunscreens and sunblocks, have found growing use in surface coating formulations to increase their UV resistance, especially on outdoor products. In this work, ZnO NPs, marketed as an additive to paints and stains, were dispersed in Milli-Q water and a commercial deck stain. Resulting solutions were applied to either Micronized-Copper Azole (MCA) pressure treated lumber or a commercially available composite decking. A portion of coated surfaces were placed outdoors to undergo environmental weathering, while the remaining samples were stored indoors to function as experimental controls. Weathered and control treatments were subsequently sampled periodically for 6 months using a simulated dermal contact method developed by the Consumer Product Safety Commission (CPSC). The release of ZnO NPs, and their associated degradation products, was determined through sequential filtration, atomic spectroscopy, X-Ray Absorption Fine Structure Spectroscopy, and electron microscopy. Across all treatments, the percentage of applied zinc released through simulated dermal contact did not exceed 4%, although transformation and release of zinc highly dependent up dispersion medium. For MCA samples weathered outdoors, water-based applications released significantly more zinc than stain-based, 180 +/− 28, and 65 +/− 9 mg/m 2 respectively. Moreover, results indicate that the number of contact events drives material release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.