Precocious puberty (<300 d of age) can be successfully induced in a majority of heifers with early weaning and continuous feeding of a high-concentrate diet. The objective of this experiment was to determine the relative effects of timing of feeding a high-concentrate diet on age at puberty in early-weaned heifers. Sixty crossbred Angus and Simmental heifer calves were weaned at 112 +/- 2 d of age and 155 +/- 3 kg of BW and were fed a receiving diet for 2 wk. Heifers were blocked by age and BW, and assigned randomly to receive a high-concentrate (60% corn; H) or control (30% corn; C) diet during phase 1 (mean age 126 to 196 d) and H or C during phase 2 (mean age 196 to 402 d), resulting in 4 treatments (HH, n = 15; HC, n = 15; CH, n = 15; and CC, n = 15). Blood samples were collected weekly beginning at a mean age of 175 d and assayed for progesterone concentration to determine age at puberty. After 56 d on the experimental diets, BW of heifers fed the H diet during phase 1 were greater (P < 0.05) than those of heifers fed the C diet (mean age of 182 d; treatment x mean age, P < 0.01). After 70 d on the new diets (mean age of 266 d), heifers fed the H diet during phase 2 reached heavier BW (P < 0.05) than heifers fed the C diet, when compared within phase 1 diet groups (HH > HC; CH > CC). Body weights in HC and CH treatments differed from a mean age of 169 through 238 d, after which BW did not differ between these treatments. The ADG over the entire experimental period was greatest for the HH treatment (1.2 +/- 0.04 kg/d; P < 0.05), followed by the HC and CH treatments (1.0 +/- 0.03 and 1.0 +/- 0.02 kg/d, respectively), which were not different, and the CC treatment gained the least (0.7 +/- 0.04 kg/d; P < 0.05). Precocious puberty occurred in 67, 47, 47, and 20% of heifers in the HH, HC, CH, and CC treatments, respectively (HH > CC; P < 0.05). Mean age at puberty for the HH and HC treatments (271 +/- 17 and 283 +/- 17 d of age, respectively) was earlier (P < 0.05) than for the CC treatment (331 +/- 11 d of age). Age at puberty in the CH treatment (304 +/- 13 d of age) was intermediate to and not different from the other treatments. Heifers fed the H diet during phase 1 attained puberty earlier (P < 0.05) than heifers fed the C diet during phase 1. In conclusion, increasing dietary energy intake in early-weaned heifers, through feeding a high-concentrate diet from 126 to 196 d of age, decreased age at puberty regardless of the diet fed after 196 d of age.
We tested the hypothesis that luteal function and fertility would be reduced in cattle induced to ovulate prematurely compared with those ovulating spontaneously. Estrus was synchronized in 56 beef cows (24 that were nonlactating and 32 that were nursing calves). At 6.4 +/- 0.1 d after estrus, all follicles > or = 5 mm were aspirated (day of aspiration = d 0) with a 17-gauge needle using the ultrasound-guided transvaginal approach. On d 1.5 and 2, cows were administered 2 luteolytic doses of PGF2alpha. Ovarian structures were monitored by transrectal ultrasonography from d -2 to 12, or ovulation. Emergence of a new follicular wave occurred on d 1.7 +/- 0.1. When the largest follicle of the newly emerged wave was 10 mm in diameter (d 4.8 +/- 0.1), cows were assigned on an alternating basis to receive 100 microg of GnRH (GnRH-10; n = 29) to induce ovulation or, upon detection of spontaneous estrus, to the spontaneous (SPON) treatment (n = 24). Cows were bred by AI at 12 h after GnRH (GnRH-10) or 12 h after the onset of estrus (SPON) as detected using an electronic surveillance system. Blood samples were collected every other day beginning 2 d after ovulation until pregnancy diagnosis 30 d after AI. Ovulation and AI occurred in 29/29 cows in the GnRH-10 and in 24/24 cows in the SPON treatment. Ovulation occurred later (P < 0.05) in the SPON (d 7.7 +/- 0.1) than GnRH-10 (d 6.8 +/- 0.1) treatment. Double ovulations were detected in 47% of cows, resulting in 1.5 +/- 0.1 ovulations per cow. Diameters of the ovulatory and the second ovulatory (in cows with 2 ovulations) follicles were greater (P < 0.05) in the SPON (12.0 +/- 0.3 mm and 10.5 +/- 0.4 mm, respectively) than in the GnRH-10 (10.7 +/- 0.1 mm and 9.2 +/- 0.3 mm) treatment. Cross-sectional areas of luteal tissue and plasma concentrations of progesterone during the midluteal phase were greater (P < 0.05) in the SPON (3.62 +/- 0.2 cm2 and 6.4 +/- 0.3 ng/mL) than in the GnRH-10 (3.0 +/- 0.2 cm2 and 5.4 +/- 0.2 ng/mL) treatment. The conception rate to AI in the SPON (100%) treatment was greater (P < 0.05) than in the GnRH-10 (76%) treatment. The animal model used in this study resulted in unusually high conception rates and double ovulations. In conclusion, premature induction of the LH surge reduced the diameter of ovulatory follicle(s), the luteal function, and the conception rate to AI.
Precocious puberty can be induced in a majority of heifers weaned early and fed a high-concentrate diet. The objective of this experiment was to determine whether induction of precocious puberty is associated with an acceleration of ovarian maturation in heifers. Crossbred Angus and Simmental heifer calves were weaned at 104 +/- 2 (n = 18; early weaned) or 208 +/- 3 (n = 10; normal-weaned, NW) d of age. The early weaned heifers were fed a high-concentrate (60% corn; EWH, n = 9) or control diet (30% corn; EWC, n = 9). The NW heifers were also fed the control diet after weaning. Daily transrectal ultrasonography was performed to characterize a complete follicular wave beginning at a mean age of 126, 161, 196, 224, and 252 (EWH and EWC), or 224 and 252 (NW) d. Blood samples were collected daily during periods of ultrasonography to determine estradiol concentrations and weekly beginning at mean ages of 153 (EWH and EWC) or 216 (NW) d to be analyzed for progesterone concentrations. Heifers in the EWH treatment were heavier (P < 0.01) than EWC heifers from a mean age of 175 d through the end of the study (treatment x age; P < 0.05). Body weights did not differ between EWC and NW. At mean ages of 196 and 224 d, the maximum diameter of the dominant follicle (MaxDF) was greater (P < 0.05) in EWH than EWC heifers. At a mean age of 224 d, MaxDF was greater (P < 0.05) in EWC than NW heifers but was not different by a mean age of 252 d. All EWH, 5 of 9 EWC, and 5 of 10 NW heifers attained puberty at less than 300 d of age (precocious puberty). Age at puberty was less (P < 0.05) in EWH (252 +/- 9 d) than in EWC and NW (308 +/- 26 and 330 +/- 25 d, respectively) treatments. Across all heifers, MaxDF and duration of follicular waves increased with age (P < 0.05), mean number of follicles during follicular waves decreased with age (P < 0.05), and peak concentrations of estradiol during follicular waves increased until a mean age of 224 d. To further characterize aspects of precocious puberty, heifers were compared across treatments between those that experienced precocious puberty and those that did not. In heifers that experienced precocious puberty, BW at puberty was less (P < 0.01) and MaxDF, follicular wave duration, and peak estradiol concentrations were greater (P < 0.05) compared with heifers that did not experience precocious puberty. Ovarian maturation was accelerated in heifers that were weaned early and fed a high-concentrate diet and was associated with precocious onset of puberty.
Disproportionate to the amount of formal training in communications and cultural awareness that students receive through the standard veterinary education curriculum, a large part of a bovine practitioner's time is spent communicating with clients, and often times the intricacies of cultural differences must be navigated through this process. The objective of this article and the associated presentation is to highlight specific examples of some of the cultural differences that are likely to be encountered, and practical approaches to handling these differences. Approaches to effective communication on small- and large-scale bovine operations will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.