Research on the thermal ecology and physiology of free‐living organisms is accelerating as scientists and managers recognize the urgency of the global biodiversity crisis brought on by climate change. As ectotherms, temperature fundamentally affects most aspects of the lives of amphibians and reptiles, making them excellent models for studying how animals are impacted by changing temperatures. As research on this group of organisms accelerates, it is essential to maintain consistent and optimal methodology so that results can be compared across groups and over time. This review addresses the utility of reptiles and amphibians as model organisms for thermal studies by reviewing the best practices for research on their thermal ecology and physiology, and by highlighting key studies that have advanced the field with new and improved methods. We end by presenting several areas where reptiles and amphibians show great promise for further advancing our understanding of how temperature relations between organisms and their environments are impacted by global climate change.
Ectothermic animals, such as amphibians and reptiles, are particularly sensitive to rapidly warming global temperatures. One response in these organisms may be to evolve aspects of their thermal physiology. If this response is adaptive and can occur on the appropriate time scale, it may facilitate population or species persistence in the changed environments. However, thermal physiological traits have classically been thought to evolve too slowly to keep pace with environmental change in longer‐lived vertebrates. Even as empirical work of the mid‐20th century offers mixed support for conservatism in thermal physiological traits, the generalization of low evolutionary potential in thermal traits is commonly invoked. Here, we revisit this hypothesis to better understand the mechanisms guiding the timing and patterns of physiological evolution. Characterizing the potential interactions among evolution, plasticity, behavior, and ontogenetic shifts in thermal physiology is critical for accurate prediction of how organisms will respond to our rapidly warming world. Recent work provides evidence that thermal physiological traits are not as evolutionarily rigid as once believed, with many examples of divergence in several aspects of thermal physiology at multiple phylogenetic scales. However, slow rates of evolution are often still observed, particularly at the warm end of the thermal performance curve. Furthermore, the context‐specificity of many responses makes broad generalizations about the potential evolvability of traits tenuous. We outline potential factors and considerations that require closer scrutiny to understand and predict reptile and amphibian evolutionary responses to climate change, particularly regarding the underlying genetic architecture facilitating or limiting thermal evolution.
Much recent theoretical and empirical work has sought to describe the physiological mechanisms underlying thermal tolerance in animals. Leading hypotheses can be broadly divided into two categories that primarily differ in organizational scale: 1) high temperature directly reduces the function of subcellular machinery, such as enzymes and cell membranes, or 2) high temperature disrupts system-level interactions, such as mismatches in the supply and demand of oxygen, prior to having any direct negative effect on the subcellular machinery. Nonetheless, a general framework describing the contexts under which either subcellular component or organ system failure limits organisms at high temperatures remains elusive. With this commentary, we leverage decades of research on the physiology of ectothermic tetrapods (amphibians and non-avian reptiles) to address these hypotheses. Available data suggest both mechanisms are important. Thus, we expand previous work and propose the Hierarchical Mechanisms of Thermal Limitation (HMTL) hypothesis, which explains how subcellular and organ system failures interact to limit performance and set tolerance limits at high temperatures. We further integrate this framework with the thermal performance curve paradigm commonly used to predict the effects of thermal environments on performance and fitness. The HMTL framework appears to successfully explain diverse observations in reptiles and amphibians and makes numerous predictions that remain untested. We hope that this framework spurs further research in diverse taxa and facilitates mechanistic forecasts of biological responses to climate change.
Hidden Markov models (HMMs) are commonly used to model animal movement data and infer aspects of animal behavior. An HMM assumes that each data point from a time series of observations stems from one of N possible states. The states are loosely connected to behavioral modes that manifest themselves at the temporal resolution at which observations are made. However, due to advances in tag technology, data can be collected at increasingly fine temporal resolutions. Yet, inferences at time scales cruder than those at which data are collected, and which correspond to largerscale behavioral processes, are not yet answered via HMMs. We include additional 1 arXiv:1702.03597v1 [stat.ME] 13 Feb 2017 hierarchical structures to the basic HMM framework in order to incorporate multiple Markov chains at various time scales. The hierarchically structured HMMs allow for behavioral inferences at multiple time scales and can also serve as a means to avoid coarsening data. Our proposed framework is one of the first that models animal behavior simultaneously at multiple time scales, opening new possibilities in the area of animal movement modeling. We illustrate the application of hierarchically structured HMMs in two real-data examples: (i) vertical movements of harbor porpoises observed in the field, and (ii) garter snake movement data collected as part of an experimental design.
Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos to control their fate far more than historically assumed. We assessed the opportunity for embryos to behaviorally thermoregulate in nature by examining thermal gradients within natural nests and eggs of the common snapping turtle (Chelydra serpentina; which displays embryonic thermal taxis) and by simulating thermal gradients within nests across a range of nest depths, egg sizes, and soil types. We observed little spatial thermal variation within nests, and thermal gradients were poorly transferred to eggs. Furthermore, thermal gradients sufficiently large and constant for behavioral thermoregulation were not predicted to occur in our simulations. Gradients of biologically relevant magnitude have limited global occurrence and reverse direction twice daily when they do exist, which is substantially faster than embryos can shift position within the egg. Our results imply that reptile embryos will rarely, if ever, have the opportunity to behaviorally thermoregulate by moving within the egg. We suggest that embryonic thermal taxis instead represents a play behavior, which may be adaptive or selectively neutral, and results from the mechanisms for behavioral thermoregulation in free-living stages coming online prior to hatching. KeywordsChelydra serpentina, microclim, nest, play, soil, snapping turtle, temperature Disciplines Ecology and Evolutionary Biology | Evolution | Population Biology CommentsThis article is from The American Naturalist 188 (2016) abstract: Historically, egg-bound reptile embryos were thought to passively thermoconform to the nest environment. However, recent observations of thermal taxis by embryos of multiple reptile species have led to the widely discussed hypothesis that embryos behaviorally thermoregulate. Because temperature affects development, such thermoregulation could allow embryos to control their fate far more than historically assumed. We assessed the opportunity for embryos to behaviorally thermoregulate in nature by examining thermal gradients within natural nests and eggs of the common snapping turtle (Chelydra serpentina; which displays embryonic thermal taxis) and by simulating thermal gradients within nests across a range of nest depths, egg sizes, and soil types. We observed little spatial thermal variation within nests, and thermal gradients were poorly transferred to eggs. Furthermore, thermal gradients sufficiently large and constant for behavioral thermoregulation were not predicted to occur in our simulations. Gradients of biologically relevant magnitude have limited global occurrence and reverse direction twice daily when they do exist, which is substantially faster than embryos can shift position within the...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.