a b s t r a c tTrees remove air pollution by the interception of particulate matter on plant surfaces and the absorption of gaseous pollutants through the leaf stomata. However, the magnitude and value of the effects of trees and forests on air quality and human health across the United States remains unknown. Computer simulations with local environmental data reveal that trees and forests in the conterminous United States removed 17.4 million tonnes (t) of air pollution in 2010 (range: 9.0e23.2 million t), with human health effects valued at 6.8 billion U.S. dollars (range: $1.5e13.0 billion). This pollution removal equated to an average air quality improvement of less than one percent. Most of the pollution removal occurred in rural areas, while most of the health impacts and values were within urban areas. Health impacts included the avoidance of more than 850 incidences of human mortality and 670,000 incidences of acute respiratory symptoms.Published by Elsevier Ltd.
Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m À2 of tree cover and sequestration densities average 0.28 kg C m À2 of tree cover per year. Total tree carbon storage in U. S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI ¼ 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI ¼ 23.7 million to 27.4 million tonnes).Published by Elsevier Ltd.
a b s t r a c tPaired aerial photographs were interpreted to assess recent changes in tree, impervious and other cover types in 20 U.S. cities as well as urban land within the conterminous United States. National results indicate that tree cover in urban areas of the United States is on the decline at a rate of about 7900 ha/yr or 4.0 million trees per year. Tree cover in 17 of the 20 analyzed cities had statistically significant declines in tree cover, while 16 cities had statistically significant increases in impervious cover. Only one city (Syracuse, NY) had a statistically significant increase in tree cover. City tree cover was reduced, on average, by about 0.27 percent/yr, while impervious surfaces increased at an average rate of about 0.31 percent/yr. As tree cover provides a simple means to assess the magnitude of the overall urban forest resource, monitoring of tree cover changes is important to understand how tree cover and various environmental benefits derived from the trees may be changing. Photo-interpretation of digital aerial images can provide a simple and timely means to assess urban tree cover change to help cities monitor progress in sustaining desired urban tree cover levels.
The 2001 National Land Cover Database (NLCD) provides 30-m resolution estimates of percentage tree canopy and percentage impervious cover for the conterminous United States. Previous estimates that compared NLCD tree canopy and impervious cover estimates with photo-interpreted cover estimates within selected counties and places revealed that NLCD underestimates tree and impervious cover. Based on these previous results, a wall-to-wall comprehensive national analysis was conducted to determine if and how NLCD derived estimates of tree and impervious cover varies from photo-interpreted values across the conterminous United States. Results of this analysis reveal that NLCD significantly underestimates tree cover in 64 of the 65 zones used to create the NCLD cover maps, with a national average underestimation of 9.7% (standard error (SE) = 1.0%) and a maximum underestimation of 28.4% in mapping zone 3. Impervious cover was also underestimated in 44 zones with an average underestimation of 1.4% (SE = 0.4%) and a maximum underestimation of 5.7% in mapping zone 56. Understanding the degree of underestimation by mapping zone can lead to better estimates of tree and impervious cover and a better understanding of the potential limitations associated with NLCD cover estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.